You are here

Universe Today Feed

Subscribe to Universe Today Feed feed Universe Today Feed
Space and astronomy news
Updated: 10 hours 4 min ago

OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu

Thu, 02/15/2024 - 1:33pm

After several months of meticulous, careful work, NASA has the final total for their haul of asteroidal material from the OSIRIS-REx mission to Bennu. The highly successful mission successfully collected 121.6 grams, or almost 4.3 ounces, of rock and dust. It won’t be long before scientists get their hands on these samples and start analyzing them.

These samples have been a long time coming. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) was approved by NASA back in 2011 and launched in September 2016. It reached its target, the carbonaceous Apollo group asteroid 101955 Bennu, in December 2018. After spending months studying the asteroid and reconnoitring for a suitable sampling location, it selected one in December 2019. After two sampling rehearsals, the spacecraft gathered its sample on October 20th, 2020.

In September 2023, the sample finally returned to Earth.

There was some serendipity in the way the final total was reached. Some of it hitched a ride outside of the main sample container. There was some drama, too, as stubborn bolts on the TAGSAM head resisted removal and delayed access to the sample contained inside. Personnel from NASA’s Astromaterials Research and Exploration Science (ARES) had to design, build, and test new tools that they used to finally open the TAGSAM head and access the sample.

For OSIRIS-REx to be successful, it had to collect at least 60 grams of material. With a final total that is double that, it should open up more research opportunities and allow more of the material to be held untouched for future research. NASA says they will preserve 70% of the sample for the future, including for future generations.

OSIRIS-REx astromaterials processors, from left, Rachel Funk, Julia Plummer, and Jannatul Ferdous, prepare to lift the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head and pour the final portion of asteroid rocks and dust into sample trays below. Credit: NASA/Robert Markowitz

The next step is for the material to be put into containers and sent to researchers. More than 200 researchers around the world will receive samples. Many of the samples will find their way to scientists at NASA and institutions in the US, while others will go to researchers at institutions associated with the Canadian Space Agency, JAXA, and other partner nations. Canada will receive 4% of the sample, the first time that Canada’s scientific community will have direct access to a returned asteroid sample.

Asteroid Bennu was chosen because it’s close to Earth and has been observed extensively. It’s a carbonaceous asteroid, which make up about 75% of asteroids. But it’s also a sub-type of carbonaceous asteroids called a B-type. These are much more uncommon than other carbonaceous asteroids, and scientists think they’re very primitive and contain volatiles that date back to the early Solar System. Researchers around the world have been eagerly waiting for these samples.

Bennu is a natural time capsule that holds clues to how the Solar System formed, including Earth. It’s also a rubble pile asteroid, and OSIRIS-REx showed that Bennu has over 200 boulders on its surface that are larger than 10 meters. Some of these boulders have veins of carbonate minerals that predate the formation of the asteroid.

Bennu’s boulder-strewn surface. Bennu is a rubble pile asteroid that was likely part of a much larger parent body at one time in the distant past. Image Credit: NASA/University of Arizona.

The “O” in OSIRIS-REx stands for Origins, and that’s one of the things scientists hope to learn more about from Bennu. Will the sample contain any organic compounds that could’ve played a role in the appearance of life? If so, that supports the panspermia theory.

Laboratory testing will also show how accurate the spacecraft’s instruments were by comparing the samples to what the instruments told us from orbit around the asteroid. This is invaluable feedback for future missions.

But the main scientific value in the Bennu sample concerns what the samples will tell us about the asteroid’s origins. Scientists think that Bennu broke off from a much larger parent body before migrating to the inner Solar System. It could hold clues to that journey and how it changed over time. Astronomers suspect that Bennu is actually older than the Solar System itself. It could hold important clues to the gas and dust in the solar nebula that eventually formed the Sun and all the planets.

We already have some early results from the Bennu sample. Initial observations showed that the asteroid contains carbon and water. Carbon wasn’t unexpected since the asteroid is a carbonaceous one. Neither was water surprising since scientists have long thought that asteroids were one of the main ways that Earth got its water.

While the OSIRIS-REx sampling mission is over, the spacecraft is still going. It’s in its extended mission now, called OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification and Security – Apophis Explorer.) Its target is the asteroid Apophis, which will have a close encounter with Earth in 2029. The mission will study how the close encounter affects the asteroid, including its orbit and trajectory, and any surface changes that Earth’s gravity might trigger, like landslides.

These are images of the asteroid Apophis captured in 2012. Apophis was considered at risk of impacting Earth, but now astronomers are confident it will pass by. (NASA / JPL-Caltech)

The OSIRIS-REx mission is an impressive display of human ingenuity and cooperation. Once scientists get their hands on the samples, we can expect a stream of fascinating results. Who knows which of our ideas about the Solar System will be confirmed and which ones will be discarded? No matter what we learn, it’s guaranteed to be interesting.

The post OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu appeared first on Universe Today.

Categories: Science

Even Stars Like the Sun Can Unleash Savage Flares in Their Youth

Thu, 02/15/2024 - 11:39am

Why would a young Sun-like star suddenly belch out a hugely bright flare? That’s what astronomers at Harvard Smithsonian Astrophysical Observatory want to know after they spotted such an outburst using a sensitive submillimeter-wave telescope. According to Joshua Bennett Lovell, leader of a team that observed the star’s activity, these kinds of flare events are rare in such young stars, particularly at millimeter wavelengths. So, what’s happening there?

Lovell and his team targeted the star, called HD 283572, in a search for circumstellar dust. It’s fairly young—about the same age the Sun was when our planets were first forming. It lies some 400 light-years away and is roughly 40 percent more massive than our star. During the outburst, it brightened up by about a factor of a hundred over 9 hours. The flare released about a million times more energy than any millimeter flares seen on any stars near the Sun.

The whole thing was pretty unusual because at first, it didn’t give any indication that it was about to flare, according to Lovell. “We were surprised to see an extraordinarily bright flare from an ordinary young star. Flares at these wavelengths are rare, and we had not anticipated seeing anything but the faint glow of planet-forming dust.”

Lovell and his team continued to observe the star using the submillimeter array on Mauna Kea in Hawai’i for several months. The hoped to see it flare again, but it remained quiet. “Our findings confirm that these flare events are rare at millimeter wavelengths, but that these can be extremely powerful for stars at this young age,” he said.

HD 283752 and the starfield it lies in, from optical and infrared DSS survey data. The insets show  Submillimeter Array (SMA) images centered on HD 283572 taken on January 14th and 17th, 2022 and March 27th, 2023. The red source in the middle panel shows the flare witnessed on January 17th. The star was not detected by the SMA on the other two days, nor in five other SMA observations not shown here. Credit: CfA/J. B. Lovell et al. Why Would a Young Star Flare?

Young stars do exhibit flare activity as they evolve, particularly red dwarf stars. However, Sun-like stars may not have as many intense flares. The event at HD 283572 raises questions about what sort of flares the Sun experienced in its infancy. And, it would be interesting to find out the effect they had on the rest of the Solar System.

So far, the team has only caught one flare at HD 283572. That makes it pretty tough to figure out exactly why it burst out so fiercely. “It’s a real puzzle and there are a range of mechanisms that could be at play. Interactions with unseen companion stars or planets, or periodic starspot activity are two possibilities, but what remains beyond doubt is how powerful an event this was,” said team member Garrett Keating. “Any potential planets developing in this system would have been hammered by the intense power of this flare. I wouldn’t want to grow up there!”

In a paper describing their work, the team suggests that the millimeter variability they witnessed could have several causes. One idea is that the flare emissions come from radiation emitted by charged particles moving rapidly in a magnetic field. This is called gyro-synchrotron/synchrotron radiation. It typically appears in the rapidly changing magnetic fields above sunspots (or starspots, on other stars). The flare could also stem from activities stirred up by interactions with an unseen companion.

Next Steps

Either cause is possible, but astronomers need to do more studies of the star to pin it down. So, the next step is to take more observations of this star and others like it to catch another flare. According to team member Ramisa Akther Rahman, the group is running another submillimeter array campaign to study stars similar to HD 283572. “By combining SMA data with longer wavelength observations, we are also able to probe the physics of flares and their emission mechanisms. I have worked on that using archival data from the Very Large Array,” said Rahman, a student at College of William and Mary, and former summer intern with Lovell.

Further studies will go a long way toward explaining the causes and frequency of flares this star experiences. The fact that it’s so young and similar to the Sun, hints at what could have happened early in our Solar System’s history. If young sun-like stars do burst out with heavy activity, that raises questions. What does that do to any planets that are forming around the star? Strong flares can affect planetary atmospheres (particularly worlds without strong magnetic fields). Stellar activity could go so far as to limit a planet’s atmospheric growth. In the worst case, it would likely prevent a planet from even forming one. And, if there’s still only a dust disk around such a star, could such outbursts affect the process of planetary formation?

For More Information

Extreme Eruption on Young Sun-like Star Signals Savage Environment for Developing Exoplanets
SMA detection of an extreme millimeter flare from the young class III star HD 283572

The post Even Stars Like the Sun Can Unleash Savage Flares in Their Youth appeared first on Universe Today.

Categories: Science

Ground-Based Lasers Could Accelerate Spacecraft to Other Stars

Thu, 02/15/2024 - 11:31am

The future of space exploration includes some rather ambitious plans to send missions farther from Earth than ever before. Beyond the current proposals for building infrastructure in cis-lunar space and sending regular crewed missions to the Moon and Mars, there are also plans to send robotic missions to the outer Solar System, to the focal length of our Sun’s gravitational lens, and even to the nearest stars to explore exoplanets. Accomplishing these goals requires next-generation propulsion that can enable high thrust and consistent acceleration.

Focused arrays of lasers – or directed energy (DE) – and lightsails are a means that is being investigated extensively – such as Breakthrough Starshot and Swarming Proxima Centauri. Beyond these proposals, a team from McGill University in Montreal has proposed a new type of directed energy propulsion system for exploring the Solar System. In a recent paper, the team shared the early results of their Laser-Thermal Propulsion (LTP) thruster facility, which suggests that the technology has the potential to provide both high thrust and specific impulse for interstellar missions.

The research team was led by Gabriel R. Dube, an Undergraduate Research Trainee with the McGill Interstellar Flight Experimental Research Group (IFERG), and Associate Professor Andrew Higgins, the Principal Investigator of the IFERG. They were joined by Emmanuel Duplay, a graduate researcher from the Technische Universiteit Delft (TU Delft); Siera Riel, a Summer Research Assistant with the IFERG; and Jason Loiseau, an Associate Professor with the Royal Military College Of Canada. The team presented their results at the 2024 AIAA Science and Technology Forum and Exposition and in a paper that appeared in the AIAA journal Aerospace Research Central (ARC).

Artist’s concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA

Higgins and his colleagues originally proposed this concept in a 2022 paper that appeared in Acta Astronautica – titled “Design of a rapid transit to Mars mission using laser-thermal propulsion.” As Universe Today reported at the time, the LTP was inspired by interstellar concepts like Starshot and Project Dragonfly. However, Higgins and his associates from McGill were interested in how the same technology could enable rapid transit missions to Mars in just 45 days and throughout the Solar System. This method, they argued, could also validate the technologies involved and act as a stepping stone toward interstellar missions.

As Higgins told Universe Today via email, the concept came to them during the pandemic when they were unable to get into their lab:

“[M]y students did a detailed conceptual study of how we could use the kind of large laser arrays envisioned for the Breakthrough Starshot for a more near-term mission in the Solar System. Rather than at 10-km-diameter, 100-GW laser envisioned for Breakthrough Starshot, we limited ourselves to a 10-m-diameter, 100-MW laser and showed it would be able to deliver power to a spacecraft out to nearly the distance of the Moon. By heating hydrogen propellant to 10,000s of K, the laser enables the “holy grail’ of high thrust and high specific impulse.”

The concept is similar to nuclear-thermal propulsion (NTP), which NASA and DARPA are currently developing for rapid transit missions to Mars. In an NTP system, a nuclear reactor generates heat that causes hydrogen or deuterium propellant to expand, which is then focused through nozzles to generate thrust. In this case, phased-array lasers are focused into a hydrogen heating chamber, which is then exhausted through a nozzle to realize specific impulses of 3000 seconds. Since Higgins and his students returned to the lab, he said, they have been attempting to experimentally verify their idea:

“Obviously, we don’t have a 100 MW laser at McGill, but we now have a 3-kilowatt laser set-up in the lab (which is scary enough) and are studying how the laser would couple its energy to a propellant (eventually hydrogen, but for now argon just because it is easier to ionize). The AIAA paper reports on the design, construction, and ‘shake-down’ of our 3-kW laser facility.”

Artist’s impression of a directed-energy propulsion laser sail in action. Credit: Q. Zhang/deepspace.ucsb.edu

Higgins and his team constructed an apparatus containing 5 to 20 bars of static argon gas from their tests. While the final concept will utilize hydrogen gas as a propellant, they used argon gas for the test because it is easier to ionize. They then fired the 3-kW laser in pulses at a frequency of 1070 nanometers (corresponding to the near-infrared wavelength) to determine the threshold power necessary for Laser-Sustained Plasma (LSP). Their results indicated that around 80% of the laser energy was deposited into the plasma, which is consistent with previous studies.

The pressure and spectral data they acquired also revealed the peak LSP temperature with the working gas, though they stress that further research is needed for conclusive results. They also stressed that a dedicated apparatus is needed to conduct forced flow and other LSP tests. Lastly, the team plans to conduct thrust measurements later this year to gauge how much acceleration (delta-v) and specific impulse (Isp) a laser-thermal propulsion system can deliver for future missions to Mars and other planets in the Solar System.

If the technology is up to the task, we could be looking at a system capable of delivering astronauts to Mars in weeks rather than months! Other concepts selected for the NIAC this year include tests to evaluate hibernation systems for long-duration missions in microgravity. Alone or in combination, these technologies could enable fast-transit missions that require less cargo and supplies and minimize astronaut exposure to microgravity and radiation.

Further Reading: AIAA, Acta Astronautica

The post Ground-Based Lasers Could Accelerate Spacecraft to Other Stars appeared first on Universe Today.

Categories: Science

Even if We Can’t See the First Stars, We Could Detect Their Impact on the First Galaxies

Thu, 02/15/2024 - 10:54am

For a long time, our understanding of the Universe’s first galaxies leaned heavily on theory. The light from that age only reached us after travelling for billions of years, and on the way, it was obscured and stretched into the infrared. Clues about the first galaxies are hidden in that messy light. Now that we have the James Webb Space Telescope and its powerful infrared capabilities, we’ve seen further into the past—and with more clarity—than ever before.

The JWST has imaged some of the very first galaxies, leading to a flood of new insights and challenging questions. But it can’t see individual stars.

How can astronomers detect their impact on the Universe’s first galaxies?

Stars are powerful, dynamic objects that wield a potent force. They can fuse atoms together into entirely new elements, an act called nucleosynthesis. Supernovae are especially effective at this, as their powerful explosions unleash a maelstrom of energy and matter and spread it back out into the Universe.

Supernovae have been around since the Universe’s early days. The first stars in the Universe are called Population III stars, and they were extremely massive stars. Massive stars are the ones that explode as supernovae, so there must have been an inordinately high number of supernovae among the Population III stars.

New research examines how all of these supernovae must have affected their host galaxies. The paper “How Population III Supernovae Determined the Properties of the First Galaxies” has been accepted for publication by the Astrophysical Journal. The lead author is Ke-Jung Chen from the Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan.

Stellar metallicity is at the core of this work. When the Universe began, it was comprised of primordial hydrogen, helium, and only trace amounts of lithium and beryllium. If you check your periodical table, these are the first four elements. Elements heavier than hydrogen and helium are called “metals” in astronomy, and metallicity in the Universe increases over time due to stellar nucleosynthesis.

But hydrogen dominated the Universe then as it does now. Only once the first stars formed and then exploded did other elements start to play a role.

“The birth of primordial (Pop III) stars at z ~ 20 ~ 25 marked the end of the cosmic dark ages and the onset of the first galaxy and supermassive black hole (SMBH) formation,” the authors of the new paper write. But their role as creators of astronomical metals is at the heart of this research.

The researchers used computer hydrodynamical simulations to examine how Pop III stars shaped early galaxies. They looked at core-collapse supernovae (CCSNe), pair-instability supernovae (PISNe), and Hypernovae (HNe.)

Stars can only form from cold, dense gas. When gas is too hot, it simply isn’t dense enough to collapse into protostellar cores. The researchers found that when Pop III stars exploded as supernovae, they produced metals and spread them into the surrounding gas. The metals cooled the star-forming gas quickly, leading to faster formation of more stars. “Our findings indicate that SNRs from a top-heavy Pop III IMF <initial mass function> produce more metals, leading to more efficient gas cooling and earlier Pop II star formation in the first galaxies.”

The simulations showed that the supernova remnants (SNR) from the Pop III SN fall towards the center of the dark matter haloes they reside in. “These Pop III SNRs and the primordial gas are dragged by the halo gravity toward its center,” the authors explain. These SNRs sometimes collide and produce turbulent flows. The turbulence mixes the gas and the metals from the SN and “creates filamentary structures that soon form into dense clumps due to the self-gravity and metal cooling of the gas.”

This leads to more star formation, though at this point, they’re still Pop III stars. These aren’t enriched by the earlier Pop III supernovae and are still made of primordial gas. Some of these later Pop III stars form before the initial ones reach the center of the halo. That creates a complicated situation.

The second round of Pop III stars then “impose strong radiative and SN feedback before the initial Pop III SNRs reach the halo center,” the authors write.

This figure from the research shows metallicity (top) and temperature (bottom) slices from the simulations, showing a 200 solar mass star forming, living a very short life, and then exploding as a supernova. The explosion creates feedback into the next stars. The left panels are right before the star forms, the middle panels are 1.5 myr after the formation, and the right panels show 0.5 myr after the star’s death. After it exploded, it formed a supernova remnant of hot and metal-rich ejecta. The metals in the ejecta would’ve contributed to cooling the gas, encouraging more rapid formation of the next generation of Pop II stars. Image Credit: Chen et al. 2024.

The Pop III stars heat the surrounding gas with their powerful UV radiation, as shown in the figure above, inhibiting star formation. But they’re massive stars, and they don’t live very long. Once they explode, they spread metals out into their surroundings, which can cool gas and trigger more star formation. “After its short lifetime of about 2.0 Myr, the star dies as a PI SN, and its shock heats the gas to high temperatures (> 105 K) and ejects a large mass of metals that enhance cooling and promotes a transition to Pop II SF,” the authors explain.

This is where the Pop III stars shaped the earliest galaxies. By injecting metals into the clouds of star-forming gas, they cooled the gas. The cooling fragmented the clouds of star-forming gas, making the following generation of Pop II stars less massive. “Due to the effective metal cooling, the mass scale of these Pop II stars shifted to a low mass end and formed in a cluster, as shown in the right panel of Figure 6.”

This is Figure 6 from the research. It shows how Pop II stars have lower masses than Pop III stars and form in clusters in the fragmented clouds. “Due to the metal cooling and turbulence, these Pop II stars form into clusters along the dense filaments around the halo center,” the authors write. Image Credit: Chen et al. 2024.

Pop III stars existed mostly in dark matter haloes. However, the research shows how they shaped the succeeding Pop II stars, which populated the early galaxies. One question astronomers have faced regarding the first galaxies is whether they were filled with extremely metal-poor (EMP) Pop II stars. But this research shows otherwise. “We thus find that EMP stars were not typical of most primitive galaxies,” the authors conclude.

The post Even if We Can’t See the First Stars, We Could Detect Their Impact on the First Galaxies appeared first on Universe Today.

Categories: Science

Another Clue Into the True Nature of Fast Radio Bursts

Thu, 02/15/2024 - 10:37am

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.

Most FRBs happen well beyond our galaxy, so while we can pin down their locations, it’s difficult to observe any details about their cause. Then in 2020 we observed a fast radio burst in our galaxy. Subsequent observations found that it originated in the region of a highly magnetized neutron star known as a magnetar. This led to the idea that magnetars were the source of FRBs, possibly through magnetic flares similar to solar flares. But magnetars and Sun-like stars are very different. It still wasn’t clear how a magnetar could release such a tremendous amount of energy so quickly, even with their intense magnetic fields. Now a new study suggests the magnetar’s rotation plays a key role.

The study focuses on the 2020 FRB magnetar. Known as SGR 1935+2154, it is both a magnetar and a pulsar. This means it emits a regular radio pop as it rotates. Pulsars are incredibly regular and are used as a kind of cosmic clock for everything from studying gravitational waves to hypothetical navigation through the galaxy. But over time a pulsar’s rotation slows down as rotational energy radiates away thanks to its magnetic field. By observing this rate of decay, astronomers can better understand the structure of neutron stars and magnetars.

How two magnetar glitches correlate with a fast radio burst. Credit: Hu, Chin-Ping, et al

But sometimes the rate of rotation will shift suddenly. It’s known as a glitch if the rotation suddenly speeds up, and an anti-glitch if it suddenly slows down. These glitches are thought to occur when there’s some kind of sudden structural change in the neutron star, such as a starquake.

In 2022, NASA’s Nuclear Spectroscopic Telescope Array (NUSTAR) spacecraft and the Neutron Star Interior Composition Explorer (NICER) on the international space station both observed another fast radio burst from SGR 1935+2154. Together they had X-ray data on the magnetar before, during, and after the burst. The team then looked at radio observations during the same time and found a dip in the pulsar rotation rate during the burst. This implies a connection between rotation and burst.

Overall what the team observed was a fluttering of X-ray emissions from SGR 1935+2154 a bit before the burst, then a glitch in the rotation, the burst itself, and a return to the regular rotation rate. This is only one observation, but it looks like the magnetar had the magnetic energy ready to release before the burst, and the shift in rotation created the conditions necessary to generate the FRB.

Reference: Hu, Chin-Ping, et al. “Rapid spin changes around a magnetar fast radio burst.” Nature 626 (2024): 500-504.

The post Another Clue Into the True Nature of Fast Radio Bursts appeared first on Universe Today.

Categories: Science

NASA is Trying to Fix a Problem With one of Perseverance's Instruments

Thu, 02/15/2024 - 5:51am

There’s a problem with the Perseverance rover. One of its instruments, the laser-shooting SHERLOC, which is mounted on the end of the robotic arm, has a dust cover that is supposed to protect the instrument when it’s not in use. Unfortunately, the cover has been stuck open, and that can allow dust to collect on the sensitive optics. The cover is partially open, so the rover can’t use its laser on rock targets or collect mineral spectroscopy data. NASA engineers are investigating the problem and are hoping to devise a solution.

There are actually two dust covers on SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), which protects the instrument’s cameras, a spectrometer, and the laser. SHERLOC’s mission is to search for organic compounds and minerals that have been altered in watery environments, which may be signs of past microbial life.

The cameras include a black-and-white context camera, along with WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), a color camera for taking close-up images of rock grains and surface textures.

From images and data, engineers for Perseverance determined early this year that the one cover was stuck in a position where some of its operational modes couldn’t function. Right now, WATSON can still operate because it looks through a different aperture than the context camera, but the laser, spectrometer and context camera can’t work.

Mounted on the rover’s robotic arm, SHERLOC uses spectrometers, a laser and a camera to search for organics and minerals that have been altered by watery environments and may be signs of past microbial life. Credit: NASA

SHERLOC works by scanning a target from about 2 inches away using an internal fine-motion steering scanner mirror to raster the laser over a small (millimeter-sized) field of view. With deep ultraviolet Raman and fluorescence spectroscopy, the instrument can help differentiate types of organic materials in the object being scanned. During the course of the mission, the instrument has found a wealth of organic materials on Mars by scanning 34 rock targets, creating a total of 261 hyperspectral maps of those targets.

NASA said that to better understand the behavior of the cover’s motor, the team has been sending commands to the instrument that alter the amount of power being fed to it. Over the years, its been amazing how engineers with the Mars rover missions have been able to fix or work around various problems and issues to allow instruments or parts of the rovers to continue to function in some capacity. For example, the Spirit rover lost the use of its right-front wheel in 2006 but mission operators kept it going by driving it backwards.

Even if engineers can’t fix the issue with SHERLOC, that doesn’t mean this type of science can’t be done anymore by Perseverance. SHERLOC is part of a seven-instrument suite on the rover, and fortunately, during development of the mission, the team designed the instrument suite so that Perseverance could still achieve its science objectives should any single instrument fail. There is some overlap among the capabilities of the instruments. Along with SHERLOC, the PIXL (Planetary Instrument for X-ray Lithochemistry) and SuperCam can also perform spectroscopy.

This photomontage shows each of the sample tubes shortly after they were deposited onto the surface by NASA’s Perseverance Mars rover, as viewed by the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera on the end of the rover’s 7-foot-long (2-meter-long) robotic arm. Image Credit: NASA/JPL-Caltech/MSSS

Now over 1,000 sols, or days since the rover landed on Mars nearly three years ago (February 18, 2021), the rover is otherwise operating quite well on its mission to search for signs of ancient microbial life, while characterizing the planet’s geology and past climate, and collecting and caching Martian rock and regolith samples to be retrieved by a future sample return mission.

Perseverance’s older sister, Curiosity, is still going strong after more than 11 years (4,000 sols) on the Red Planet.

The post NASA is Trying to Fix a Problem With one of Perseverance's Instruments appeared first on Universe Today.

Categories: Science

Intuitive Machines’ Odysseus Lander Begins Its Moon Odyssey

Wed, 02/14/2024 - 11:00pm

Now it’s Intuitive Machines’ turn to try making history with a robotic moon landing.

Today’s launch of the Houston-based company’s Odysseus lander marks the first step in an eight-day journey that could lead to the first-ever soft landing of a commercial spacecraft on the moon. Odysseus would also be the first U.S.-built spacecraft to touch down safely on the lunar surface since Apollo 17’s mission in 1972.

The lander — which is as big as an old-fashioned British phone booth, or the Tardis time portal from the “Doctor Who” TV series — was sent spaceward from Launch Complex 39A at NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket at 1:05 a.m. ET (0605 UTC).

Liftoff was originally scheduled for the previous night, but was postponed due to concerns that arose while getting ready to load methane fuel onto the lander. The concerns were resolved, and tonight’s countdown proceeded smoothly.

After launching Intuitive Machines’ IM-1 mission, the Falcon 9’s first-stage booster flew itself back for a touchdown on SpaceX’s Landing Zone 1, not far from its Florida launch pad. Meanwhile, Odysseus separated from the rocket’s second stage and pressed onward to the next phase of its lunar odyssey.

Last month, a different company called Astrobotic had been in line to achieve the first commercial moon landing, but its Peregrine lander suffered a propellant leak after liftoff — a setback that forced the company to cancel the moon mission and instead send the robot to its fiery doom during atmospheric re-entry over the Pacific Ocean.

“Landing on the moon is extremely challenging,” Joel Kearns, NASA’s deputy associate administrator for exploration, told reporters in advance of Odysseus’s launch. “You’ve probably seen that, over the past year, success of every landing was never assured.” (Those landing attempts included failures by Russia and a Japanese private venture, as well as successes by the Indian and Japanese space agencies.)

Intuitive Machines CEO Steve Altemus said he’s confident his company’s attempt will be successful. “We learned from others … but in addition, we bring things together quickly. We bring hardware and software together in the early stages of development and testing, and we test often,” he said during NASA’s webcast.

“Test, test, test like we fly — that’s the key to success,” Altemus said.

If all goes according to plan, Odysseus will power its way to a Feb. 22 landing in Malapert A, a crater near the moon’s south pole. The south polar region is a key target for exploration because many of its craters are thought to hold reservoirs of water ice — a potential resource for future moon bases.

Like Astrobotic’s Peregrine lander mission, the IM-1 mission is principally supported by funding from NASA’s Commercial Lunar Payload Services program, also known as CLPS. The program is meant to leverage private enterprise — and reduce NASA’s costs in the long run. Kearns said NASA has agreed to pay as much as $118 million to have Odysseus deliver its science payloads to the lunar surface.

Those payloads include cameras that will document the plumes of dust kicked up by the landing, an experimental radio navigation beacon, a radio-based fuel gauge, a laser range finder, a set of laser reflectors and a sensor that will study the moon’s electron plasma environment. Data from the experiments will help NASA plan for the Artemis program’s crewed lunar landings, which could start happening as soon as 2026.

In addition, Odysseus is carrying an array of commercial payloads. One payload is a camera system that will be dropped off during the lander’s descent to take “selfie” pictures of the touchdown. Another payload is a mini-observatory that could capture pictures of the lunar surface and the first image of the Milky Way galaxy’s center as seen from the moon.

There’s also a miniaturized information archive from Galactic Legacy Labs, a digital data storage device from Lonestar Data Holdings, a box of 125 marble-sized moon sculptures created by Jeff Koons, and a test swatch of thermal reflective material from Columbia Sportswear.

Odysseus’s science mission is scheduled to last about a week. The end will come when the sun drops beneath the moon’s horizon, cutting off the solar-powered lander’s ability to charge up its batteries. But that won’t be the end for commercial moon missions: Intuitive Machines is already working on another lander that will drill for ice in the moon’s south polar region. Meanwhile, Astrobotic is getting set to send NASA’s VIPER rover to a spot near the south pole, and Firefly Aerospace is due to deliver 10 NASA payloads to Mare Crisium aboard its Blue Ghost lander.

The post Intuitive Machines’ Odysseus Lander Begins Its Moon Odyssey appeared first on Universe Today.

Categories: Science

Engineers Design Habitats for the Moon Inspired by Terminite Mounds

Wed, 02/14/2024 - 2:31pm

Through the Artemis Program, NASA intends to send astronauts back to the Moon for the first time since the Apollo Era. But this time, they intend to stay and establish a lunar base and other infrastructure by the end of the decade that will allow for a “sustained program of lunar exploration and development.” To accomplish this, NASA is enlisting the help of fellow space agencies, commercial partners, and academic institutions to create the necessary mission elements – these range from the launch systems, spacecraft, and human landing systems to the delivery of payloads.

With NASA funding, a team of engineers from the University of Arizona College of Engineering (UA-CE) is developing autonomous robot networks to build sandbag shelters for NASA astronauts on the Moon. The designs are inspired by cathedral termite mounds, which are native to Africa and northern Australia’s desert regions. Their work was the subject of a paper presented at the American Astronautical Society Guidance, Navigation, and Control (AAS GNC) Conference, which took place from February 1st to 7th in Littleton and Breckinridge, Colorado.

The team was led by Associate Professor Jekan Thanga of the UA-CE Department of Aerospace and Mechanical Engineering, who is also the head of the Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory and the NASA-supported Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation Systems (ASTEROIDS) Laboratory. He and his team are partnering with NASA’s Jet Propulsion Laboratory and the Canadian space robotics company MDA to create the LUNAR-BRIC consortium, which is developing the technology for the Artemis Program.

Illustration of NASA astronauts and the elements of the Lunar Base Camp around the Moon’s south pole. Credit: NASA

Per the Artemis Program, NASA will land astronauts around the lunar south pole with the Artemis III mission, currently scheduled for 2026/27. By the end of the decade, they plan to build the infrastructure for long-duration stays, like the Lunar Gateway and the Artemis Base Camp. The latter element consists of a Foundation Lunar Habitat (FLH), the Lunar Terrain Vehicle (LTV), and a Habitation Mobility Platform (HMB). However, they will also need semi-permanent safe shelters while they search for optimal locations to build permanent habitats.

Consistent with NASA’s vision for future space exploration, a key element in this plan is to leverage local resources for building materials and resources – a process known as In-Situ Resource Utilization (ISRU). For their concept, Thanga and his team investigated whether sandbags filled with lunar regolith could be used instead of traditional building materials to build lunar infrastructure. This includes housing, warehouses, control towers, robot facilities, landing pads, and blast walls to protect lunar buildings as spacecraft conduct takeoffs and landings.

Thanga was first inspired by a YouTube video showing the work of Iranian-born American architect Nader Khalili, best known for designing structures that incorporate unconventional building materials. This includes his development of SuperAdobe sandbag construction to create structures for the developing world and emergency situations. During the 1980s, the late architect proposed building sandbag structures on the Moon and other extraterrestrial locations. Thanga incorporated the concept of insect “skyscrapers” into Khalili’s ideas, specifically the tall-standing cathedral termite mounds.

These mounds are common in African and Australian deserts and are important in regulating the subterranean nest environment. As Thanga described in a UA College of Engineering News release:

“In the case of the termites, it’s very relevant to our off-world challenges. The extreme desert environments the termites face are analogous to lunar conditions. Importantly, this whole approach doesn’t rely on water. Most of the moon is bone-dry desert. Learning about that helped direct me toward distributed systems for construction.”

UA aerospace engineering students (from left) Min Seok Kang, Athip Thirupathi Raj, Chad Jordan Cantin, Sivaperuman Muniyasamy, and Korbin Aydin Hansen display a smart sandbag structure. Credit: University of Arizona College of Engineering

Thanga has long been interested in applying insect social systems to distributed robot networks where machines are organized by swarm intelligence to work cooperatively without human intervention. In their system, the robots embed sensors and electronics in sandbags, fill them with lunar regolith, and then use these to assemble the structures in place. Some sensors provide location data to help the robots place the sandbags, while others provide communication capabilities and environmental information to warn of potential dangers.

These include moonquakes, which result from heating and cooling during every lunar day and night (which last 14 days each). The temperature swings during this cycle are also a potential hazard, ranging from -183 to 107 °C (-298 to 224 °F) between day and night. Because the Moon is an airless environment, there’s also the threat of micro-meteors that bombard the surface at an average speed of 96,560 km/h (60,000 mph). The lack of an atmosphere (and a magnetosphere) also means the lunar surface is exposed to considerably more solar radiation and cosmic rays.

These buildings meet NASA’s requirements for the Artemis Program by reducing the amount of material that must be transported to the Moon while protecting the harsh lunar environment. NASA has granted Thanga and his team $500,000 for lunar surface projects through the agency’s Space Technology Artemis Research program (M-STAR), part of the Minority University Research and Education Project (MUREP). NASA has also provided $1 million annually for UA student research projects over the last five years through a MUREP Institutional Research Opportunity (MIRO). Said Thanga:

“The goal is to raise the participation of underrepresented groups in aerospace. And these are hands-on, student-centric projects. This lab offers me the exact environment – it’s startup culture. I’m leading a team and working with multidisciplinary people. I’m glad I’m here.”

Thanga and Sivaperuman Muniyasamy, an aerospace engineering doctoral student and first author on the paper describing the technology, presented their idea during a classified session of the AAS GNC. “By publishing the paper at the conference, we’re gaining feedback from other experts that really helps us move forward,” said Muniyasamy. “It’s no accident this team has an academic partner, a commercial partner, and a government agency,” Thanga added. “Given the challenges, part of the path is for us to collaborate.”

Artist’s impression of a lunar mining facility harvesting resources from the Moon’s surface. Credit: NASA/Pat Rawlings

Beyond the team’s plans for lunar habitats, the LUNAR-BRIC consortium plans to produce many concepts that will support the creation of a space economy. In addition to leading a team of eight undergraduate and master’s students working on lunar surface projects, Muniyasamy plans to launch a space mining company after completing his Ph.D. As he noted, NASA plans to build facilities for long-term habitation and industry within a few years of the successful landing of Artemis III that will enable (among other things) environmentally responsible lunar and asteroid mining.

Thanga and his student team worked with the university commercialization arm (Tech Launch Arizona) to file patents on the robotic system and the distributed computer processing networks that link the proposed structures and robots.

Further Reading: The University of Arizona

The post Engineers Design Habitats for the Moon Inspired by Terminite Mounds appeared first on Universe Today.

Categories: Science

Radio Telescope Confirms Free-Floating Binary Planets in the Orion Nebula

Wed, 02/14/2024 - 12:39pm

Planets orbit stars. That’s axiomatic. Or at least it was until astronomers started finding rogue planets, also called free-floating planets (FFPs). Some of these planets were torn from their stars’ gravitational grip and now drift through the cosmos, untethered to any star. Others formed in isolation.

Now, astronomers have discovered that some FFPs can orbit each other in binary relationships as if swapping their star for another rogue planet.

In 2023, astronomers working with the James Webb Space Telescope (JWST) detected 42 JuMBOs in the inner Orion Nebula and the Trapezium Cluster. JuMBOs are different than other free-floating planets. They’re Jupiter-Mass Binary ObjectS.

“The existence of these wide free-floating planetary-mass binaries was unexpected in our current theories of star and planet formation.”

From “A Radio Counterpart to a Jupiter-mass Binary Object in Orion,” by Rodriquez et al. 2024.

In that research, the JWST performed a near-infrared survey of the region with its powerful NIRCam. It looked at powerful outflows and jets from young stars, ionized circumstellar disks, and other objects in the region. Among the findings were the 42 JuMBOs. “Further papers will examine those discoveries and others in more detail,” the authors of that paper wrote.

The Trapezium Cluster lies near the centre of the Orion Nebula. In 2023, researchers discovered more than 40 JuMBOs in this region. Image Credit: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team

That’s exactly what’s happened. New research published in The Astrophysical Journal Letters examines one of the JuMBOs in more detail. But instead of infrared observations, the authors used observations from the Karl G. Jansky Very Large Array (VLA) to examine the objects in radio emissions.

The paper is “A Radio Counterpart to a Jupiter-mass Binary Object in Orion.” The lead author is Luis Rodriguez, a researcher at the Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México.

“The existence of these wide free-floating planetary-mass binaries was unexpected in our current theories of star and planet formation,” Rodriguez and his colleagues write in their paper. “These systems are not associated with stars, and their components have masses of giant Jupiter-like planets and separations in the plane of the sky of order about 100 au.”

Our understanding of planets and how they form starts with stars. Stars form in giant molecular clouds, and as they form, a rotating disk of gas and dust forms around the star. Planets form in these disks, and they take up residence in orbit around the star.

But rogue planets, also called Isolated Planetary Mass Objects (IPMOs), can form differently. Currently, there are two competing explanations for their formation. They may form around stars as described above, or they may form in isolation like low-mass stars and brown dwarfs do.

The JuMBOs range from 0.6–14 Jupiter masses, and they’re between 28 and 384 AU apart. There’s currently no explanation for how these binary objects can form. Solitary rogue planets are compatible with our understanding of how stars and planetary systems form. But JuMBOs don’t fit inside that understanding.

These objects have things in common with brown dwarfs, sub-stellar objects more massive than the largest planets yet too small to trigger fusion. Brown dwarfs can be found at wide separations in binary pairs. Astronomers found one brown dwarf pair separated by 240 AU, and there are likely more widely separated brown dwarf binaries yet to be discovered.

In this paper, the researchers examined one particular JuMBO from the previous study called JuMBO 24. They looked at VLA observations that spanned a decade and found that JuMBO 24 was far brighter in radio luminosity than brown dwarfs.

The research team naturally wondered if the radio sources they detected were coming from JuMBO 24. By working their way through the data, they concluded that it’s highly unlikely that the radio emissions are coming from a source other than JuMBO 24. The odds of the radio emissions and the infrared emissions detected by JWST coming from separate sources is only 1 in 10,000, according to the researchers.

This figure from the research shows how the infrared emissions detected by the JWST and the radio emissions detected by the VLA both have the same source. The white rectangle shows the location of the infrared emissions, and the contours and colour scale show the intensity of the radio emissions. Image Credit: Rodriguez et al. 2024.

The objects most similar to JuMBOs in terms of their radio emissions are the ultracool dwarfs. But JuMBO 24 doesn’t exhibit the same patterns in radio emissions that ultracool dwarfs do. “The radio emission appears to be steady at a level of about 50 millijanskys over timescales of days and years,” the authors point out, while emissions from ultracool dwarfs have greater variability. That means that JuMBO 24 is the first detected centimetre continuum source with a planetary-mass binary object.

“The radio emission is marginally resolved in the same direction as the infrared source detected by JWST, suggesting that the radio emission comes from a combination of the two planetary-mass objects,” the researchers write in their conclusion. For now, the mechanism responsible for the radio emissions is a mystery. “Additional radio observations are necessary to pin down the nature of the radio emission mechanism,” the team concludes.

For lead author Rodriguez, there’s more to this discovery than just the unexplained radio emissions and what the discovery means for our understanding of how planets can form. These binary planets on ultra-wide orbits around each other could host moons that are potential abodes of life.

“What’s truly remarkable is that these objects could have moons similar to Europa or Enceladus, both of which have underground oceans of liquid water that could support life,” he stated.

The post Radio Telescope Confirms Free-Floating Binary Planets in the Orion Nebula appeared first on Universe Today.

Categories: Science

Passing Stars Changed the Orbits of Planets in the Solar System

Wed, 02/14/2024 - 11:13am

The orbit of Earth around the Sun is always changing. It doesn’t change significantly from year to year, but over time the gravitational tugs of the Moon and other planets cause Earth’s orbit to vary. This migration affects Earth’s climate. For example, the gradual shift of Earth’s orbit and the changing tilt of Earth’s axis leads to the Milankovitch climate cycles. So if you want to understand paleoclimate or the shift of Earth’s climate across geologic time, it helps to know what Earth’s orbit was in the distant past.

Fortunately, Newtonian mechanics and the law of gravity work backward in time as well as forward. We can use Newtonian dynamics to predict eclipses and the trajectories of spacecraft to the outer solar system, but we can also use it to turn back the clock and map Earth’s orbit into the deep past. Within limits.

Since there is no exact solution for the orbital motion of more than two bodies, we have to run our calculations computationally. A bit of chaos comes into the works, so any uncertainty we have in the current positions and motions of large solar system bodies decreases the accuracy of our retrodiction the further back in time we go. Fortunately with radar ranging and other measurements, our computations are so accurate we can trace Earth’s orbit back 100 million years into the past with some confidence. Or so we thought because a new paper demonstrates we’ve been overlooking the gravitational effect of passing stars.

The uncertainty of Earth’s orbit 54 million years ago. Credit: N. Kaib/PSI

Most stars are too distant to have any measurable effect on Earth’s orbit. They tug upon our world no more than the distant rocks of the Oort Cloud. But now and then a star will make a close approach. Not close enough to throw our solar system into chaos, but close enough to give the solar planets a gravitational nudge. The most recent close approach was HD 7977. Right now the star is about 250 light-years away, but 2.8 million years ago it passed within 30,000 AU or half a light-year of the Sun. It may have passed as close as 4,000 AU from the Sun. At the larger distance, the gravitational effect of HD 7977 would be negligible, but at the closer end of the range, it would be significant. When you add this into the computational mix, the uncertainties of Earth’s past orbit make it difficult to be confident more than 50 million years. And that has a significant impact on paleoclimate studies.

For example, about 56 million years ago Earth entered a period known as the Paleocene-Eocene Thermal Maximum, where global temperatures rose 5 – 8 °C. Orbital models point to the fact that Earth’s orbit was particularly eccentric during that time, which could be the underlying cause. But this new study raises the uncertainty of that conclusion, meaning that other factors such as geologic activity may have played a major role.

It’s estimated that a star passes within 10,000 AU of the Sun every 20 million years or so. This means that as we map Earth’s orbital motion deeper into the past, we must also look for effects that may be written in the stars.

Reference: Kaib, Nathan A. and Raymond, Sean N. “Passing Stars as an Important Driver of Paleoclimate and the Solar System’s Orbital Evolution.” Astrophysical Journal Letters 962 (2024): L28.

The post Passing Stars Changed the Orbits of Planets in the Solar System appeared first on Universe Today.

Categories: Science

Water Found on the Surface of an Asteroid

Tue, 02/13/2024 - 2:50am

Our Solar System is a collection of objects from planets and moons to comets and asteroids. It’s thought there are upwards of 1 million asteroids orbiting the Sun and it was thought that any water present on them should have evaporate long ago. A recent study using data from the SOFIA infrared telescope discovered water on the asteroids Iris and Massalia. 

Among the million or so asteroids, Iris is 199 km in diameter making it larger than about 99% of other asteroids. It orbits the Sun within the asteroid belt between Mars and Jupiter at an average distance of 2.39 astronomical units taking 3.7 years to complete one orbit.  Massalia is of comparable in size to Iris coming in at 135 km across and shares an orbit similar to that of Iris. 

Asteroids across the Solar System vary a little in composition and structure. Nearer to the Sun the Silicate asteroids devoid of ice dominate yet further out, icy asteroids are more common. Exploring the distribution of the asteroids helps to understand the composition and transfer of elements in the solar nebula before the planets and asteroids formed. If we can also understand the distribution of water too in our own system then it will help us to understand its prevalence in exoplanetary systems and the liklihood of extraterrestrial life. 

Data captured by SOFIA – the Stratospheric Observatory for Infrared Astronomy which retired in 2022 – has revealed water on asteroids Iris and Massalia.  It’s not the first time SOFIA has made a discovery of this sort. Back in October 2020 SOFIA identify water on the Moon. Using its Faint Object InfraRed Camera (FORCAST) it detected the signature of water molecules on the surface equivalent to about 350 millilitres of water in a cubic meter of soil.

The lead author on the paper, Dr Anicia Arredondo from the Southwest Research Institute confirmed that, based on the strength of the spectral lines, the volumes and prevalence of water on the asteroids was consistent with that found on the Moon. Here too it was locked up, bound to minerals as well as absorbed by silicates.

Data was also analysed from two fainter asteroids, Parthenope and Melpomene, but there was too much noise to yield a conclusive result. It appears that the FORCAST instrument lacks the necessary sensitivity to identify the spectral feature of water on these asteroids, if indeed it was present. 

Further analysis is required to fully understand the distribution of water across the Solar System but following on from the study, the team will now utilise the James Webb Space Telescope which has higher quality optics and a much better signal to noise ratio to learn more. 

Source : SwRI Scientists Identify Water Molecules on Asteroids for the First Time

The post Water Found on the Surface of an Asteroid appeared first on Universe Today.

Categories: Science

Could We Live Without Kilonovae?

Mon, 02/12/2024 - 5:23pm

It’s a classic statement shared at many public outreach events…’we are made of stardust’. It is true enough that the human body is mostly water with some other elelments like carbon which are formed inside stars just like the Sun. It’s not just common elements like carbon though for we also have slighly more rare elements like iodine and bromine. They don’t form in normal stars but instead are generated in collisions between neutron stars!  It poses an interesting question, without the neutron star merger event; ‘would we exist?’

Among the plethora of elements in the human body, Iodine – which is part of the thyroid hormone system and various physiological functions such as grown, development, body temperature regulation and heart rate and bromine which is responsible for tissue development and structural integrity. These elements are formed in systems where two neutron stars are orbiting each other but lose energy through the emission of gravity waves. As the system loses energy, the neutron stars spiral closer and closer to each other culminating in a collision and the creation of iodine and bromine. 

Neutron stars are formed when a massive star runs out of its fuel and undergoes collapse. As the core of the star collapses, the pressure and temperatures increase compressing all the protons and electrons into a neutron. If the mass falls within about 1 to 2 times the mass of the Sun then the collapse halts and a neutron star is formed. These objects can result in a stellar corpse the size of a city- approximately 20 km across. A sugar cube sized piece of neutron star material would weight in at 1 trillion kilograms here on Earth. that’s equivalent to the mass of a mountain! For those stars with more mass then the collapse continues to become a stellar mass blackhole. 

When neutron stars collide as described earlier in this article, the event is known as a kilonovae. Certainly if Earth happened to live in the blast zone then it would most definitely not be conduscive to live but, the elements synthesized are key elements supporting our very existience. The process is known as the rapid neutron-capture, or the r-process for short. Seed nuclei capture a series of neutrons just in time to avoid radioactive decay before another neutron is captured. 

The paper that was written by John Ellisa, Brian D. Fields and Rebecca Surman was published recently and it articulates the importants of the elemtns to human physiology. It also explores the possibility of searching for samples in the lunar surface that may have been depsotied by a recent kilonova explosion. 

It seems that, whilst the importance of the two elements iodine and bromine cannot be denied, evidence of their origin is slightly harder to get hold of. If the study is anything to go by it looks like everything points to production of these essential elements by kilonova and therefore without these violent events, live would never have evolved in the way it has without them. 

Source : Do we Owe our Existence to Gravitational Waves?

The post Could We Live Without Kilonovae? appeared first on Universe Today.

Categories: Science

The Vera Rubin’s Keen Eye On Our Solar System Will Inspire Future Missions

Mon, 02/12/2024 - 1:48pm

When the interstellar object (ISO) Oumuamua appeared in our Solar System in 2017, it generated a ton of interest. The urge to learn more about it was fierce, but unfortunately, there was no way to really do so. It came and went, and we were left to ponder what it was made of and where it came from. Then, in 2019, the ISO comet Borisov came for a brief visit, and again, we were left to wonder about it.

There’s bound to be more of these ISOs traversing our Solar System. There’s been talk of having missions ready to go to visit one of these interstellar visitors in the future, but for that to happen, we need advance notice of its arrival. Could the Vera Rubin Observatory tell us far enough in advance?

No mission leaves the launch pad without detailed planning, and detailed planning depends on observations. Ground-based observations laid the foundation for our forays into the Solar System. NASA missions like OSIRIS-REx, Lucy, and Psyche are simply impossible without detailed ground observations preparing the way.

Soon, one of our most powerful and unique observatories will begin operations, the Vera Rubin Observatory. Its main activity will be the Legacy Survey of Space and Time (LSST.) The LSST will image our Solar System in far more detail than ever before, and it’ll do it continuously for a decade. The wealth of data that flows from those observations will be a massive benefit to mission planning and will probably inspire missions that we haven’t dreamed of yet.

The VRO’s Legacy Survey of Space and Time is based on the observatory’s 8.4 meter, wide-angle primary mirror and its ability to change targets in only five seconds. Attached to it is the world’s largest digital camera, a 3.2 gigapixel behemoth. The VRO will image the entire available night-time sky every few nights.

The complete focal plane of the future LSST Camera is more than 2 feet wide and contains 189 individual sensors that will produce 3,200-megapixel images. (Jacqueline Orrell/SLAC National Accelerator Laboratory)

The LSST is aimed at detecting transients like supernovae and gamma-ray bursts. It’s also going to study dark energy and dark matter and will map the Milky Way. But it will also map small objects in our Solar System like near-Earth asteroids (NEA) and Kuiper Belt Objects (KBOs).

“Nothing will come close to the depth of Rubin’s survey and the level of characterization we will get for Solar System objects,” said Siegfried Eggl, Assistant Professor at the University of Illinois Urbana-Champaign and Lead of the Inner Solar System Working Group within the Rubin/LSST Solar System Science Collaboration. “It is fascinating that we have the capability to visit interesting objects and look at them close-up. But to do that we need to know they exist, and we need to know where they are. This is what Rubin will tell us.”

It’s difficult to overstate how the VRO and its LSST will advance our understanding of the Solar System. There are other survey telescopes, like Pan-STARRS (Panoramic Survey Telescope and Rapid Response System.) Pan-STARRS has detected huge numbers of astronomical transients. Its job is to detect them and alert astronomers so other telescopes can observe them.

Pan-STARRS is based on two telescopes with 1.8-meter mirrors and is our most effective detector of Near-Earth Objects (NEOs), but once the VRO is operational, it will be relegated to a distant second place.

Intriguingly, the VRO will also detect ISOs. In a 2023 paper, researchers estimated that the VRO will detect up to 70 interstellar objects every year. If the VRO can see them far enough in advance, it could give us time to launch a mission to one.

“Rubin is capable of giving us the prep time we need to launch a mission to intercept an interstellar object,” said Eggl. “That’s a synergy that’s very unique to Rubin and unique to the time we’re living in.”

This artist’s impression illustrates an interstellar object rapidly approaching our Solar System. ISOs have been kicked out of their home systems somehow, and some of them will travel through interstellar space forever. Others will visit systems like ours, presenting themselves for study. Image Credit: Rubin Observatory/NOIRLab/NSF/AURA/J. daSilva/ M. Zamani

It’s unclear how many ISOs visit our Solar System every year, and will be detectable. While some researchers suggest the VRO can detect 70 per year, others say the number will be lower. The VRO isn’t magic. Objects that are too dim and/or are moving too quickly can escape detection. But it seems certain that the LSST will detect some ISOs. It may even discern patterns in their trajectories that make it easier to detect more of them.

As our knowledge of ISOs grows, the urge to visit one of them will grow alongside it. The appearance of Oumuamua and Borisov shows that opportunities will keep presenting themselves. There are already preliminary plans on how to visit one.

The ESA’s Comet Interceptor is designed to visit a long-period comet. The Interceptor mission has three spacecraft, and each one will study the comet from a different angle, giving a 3D view. Advance notice is critical to the Comet Interceptor mission, and the ESA specifically mentions the LSST as enabling the mission by alerting us to an appropriate target soon enough.

But the target doesn’t need to be a comet. It could be anything travelling through the inner Solar System.

The unique thing about the Comet Interceptor is that it’ll already be lying in wait for its target. After launch, it’ll travel to the Sun-Earth Lagrange 2 (L2) point. It’ll enter a halo orbit there and await further instructions. The ESA can bide their time until the VRO detects a desirable target on the right trajectory, and they can activate the Comet Interceptor.

NASA’s Lucy mission shows how advanced knowledge of objects in the Solar System enables powerful missions. Lucy relies on exacting observations of Solar System objects and will visit several asteroids by looping its way through the inner Solar System, using Earth as a gravity assist on three separate occasions. Detailed knowledge of the Solar System inspired and allowed Lucy’s mission.

The Comet Interceptor, or another mission like it, won’t need a path this complex. But just like Lucy, it will rely on keen observations, something the VRO and the LSST will provide in great depth.

The LSST won’t just enable missions like the Comet Interceptor. It’ll inspire new ones we can’t envision yet. That’s because we don’t know what the Survey will reveal yet. It might uncover regions of objects that behave in a way we haven’t seen yet or types of objects clustered together that have remained unseeable.

“If you think of Rubin as looking at a beach, you see millions and millions of individual sand grains that together constitute the entire beach,” said Eggl, “There might be an area of yellow sand, or volcanic black sand, and a space mission to an object in that region could investigate what makes it different. Often, we don’t know what’s weird or interesting unless we know the context it’s in. With our current telescopes, we’ve essentially been looking at the big boulders on the beach,” says Eggl, “but Rubin will zoom in on the finer grains of sand.”

The Jupiter Trojan asteroids that Lucy will visit are a good example of this. This type of asteroid was predicted to exist back in the 1770s, but the first one wasn’t seen until more than a century had passed. Even then, nobody was sure it was actually a Trojan asteroid until almost another century had passed. Now, astronomers know that there are thousands of them.

In a similar way, our knowledge of ISOs could become much more complete once the LSST gets going. A whole new window into ISOs could open. Astronomers may discern patterns in their trajectories and in their makeup that lead to new understandings of their origins. If the Comet Interceptor or a similar mission is dispatched to one, we’ll learn more about how planetary systems form, including our own.

Not everything in our Solar System formed where we see it today. Some bodies have been captured, like Neptune’s moon Triton, which is likely a captured Kuiper Belt Object. Astronomers think it’s highly likely that some of our Solar System’s objects are captured ISOs. The VRO and the missions it inspires could identify these objects.

New observations lead to new questions and new missions designed to answer them. That’s a long-standing pattern in our quest to understand nature.

Who knows what the VRO will see and what future missions its findings will lead to?

The post The Vera Rubin’s Keen Eye On Our Solar System Will Inspire Future Missions appeared first on Universe Today.

Categories: Science

What Happened to All Those Boulders Blasted into Space by DART?

Mon, 02/12/2024 - 9:40am

It was a $325 million dollar project that was intentionally smashed to smithereens in the interest of one day, saving humanity. The DART mission (Double Asteroid Redirection Test) launched in November 2021 on route to asteroid Dimorphos. Its mission was simple, to smash into Dimorphos to see if it may be possible to redirect it from its path. On impact, it created a trail of debris from micron to meter sized objects. A new paper analyses the debris field to predict where they might end up. 

Asteroid Dimorphos orbits around its host asteroid, Didymos and together they form a binary asteroid system. Neither asteroid poses a threat to Earth but their gave a fabulous opportunity to test technology for defending Earth from potential impactors. On 11 October NASA announced that DART successfully altered the orbit of Dimorphos showing that the kinetic energy of a spacecraft could indeed alter the trajectory of a potential threat. 

DART hit Dimorphos in an almost head on collision and the resulting ejecta plume travelled at approximately 2km/s. The plume had been observed by the Les Makes Observatory and with the Hubble Space Telescope. The debris contained material from dust sized particles to meteor and even boulder sized objects. Just before the impact, the CubeSat LICIACube was released from DART so that it could offer some long term monitoring of the debris field. 

Observations that followed showed delicate structures within the ejecta with a diffuse cloud that quickly transformed into a cone shaped formation with a tail. That tail, just like the tail of a comet was then pushed away from the asteroid system by the solar radiation pressure. Using ground based imagery, the mass and velocity of the ejected particles was established. 

The analysis of ejecta enabled modelling to be undertaken to estimate that approximately 3% of all ejected boulders would remain in orbit after 83 days (within the scope of the captured data). This estimation was in line with the pre-impact simulations over a 60 day period. By varying the parameters of the simulation they also revealed that 5% of 10cm sized particles escaping with a velocity of 0.12 and 0.18m/s would remain in orbit around the system after a 60 day period of time, similar again to the observations. 

Perhaps the greatest concern though is the long term fate of the larger boulder sized ejecta. Taking integrations covering 800 and 1550 days following the impact, the results showed a gradual decline in the number of boulders bound to the asteroid system. The good news is that for the most part, the reduction was due to collisions with Didymos and Dimorphos themselves. In no simulations was there any suggestion that any of the ejecta would escape the double asteroid system. 

What of the future, well to fully understand the results a follow up study is required. Hera is a European Space Agency mission slated to travel to Didymos and Dimorphos 5 years after the DART impact. On arrival it will assess the orbit of Dimorphos to understand its orbital changes. 

Source : On the fate of slow boulders ejected after DART impact on Dimorphos

The post What Happened to All Those Boulders Blasted into Space by DART? appeared first on Universe Today.

Categories: Science

Measuring Distances in the Universe With Fast Radio Bursts

Mon, 02/12/2024 - 8:39am

Now and then there is a bright radio flash somewhere in the sky. It can last anywhere from a few milliseconds to a few seconds. They appear somewhat at random, and we still aren’t sure what they are. We call them fast radio bursts (FRBs). Right now the leading theory is that they are caused by highly magnetic neutron stars known as magnetars. With observatories such as CHIME we are now able to see lots of them, which could give astronomers a new way to measure the rate of cosmic expansion.

The rate of cosmic expansion is described by the Hubble parameter, which we can measure to within a few percent. Unfortunately, our various methods of measure are now so precise their uncertainties don’t overlap. This contradiction in values is known as the Hubble tension. Several re-evaluations of our methods have ruled out systematic error, so astronomers look to new independent ways to measure the Hubble parameter, which is where a new study comes in.

The paper looks at using FRBs as a Hubble measure. For light from an FRB to reach us, it needs to travel millions of light-years through the diffuse intergalactic and interstellar medium. This causes the frequency of the light to spread out. The amount of spectral spreading is known as the Dispersion Measure (DM), and the greater the DM the greater the distance. So we know the distance to FRBs. But to measure cosmic expansion, we also need a second distance measure, and here the paper proposes using gravitational lensing.

The geometry of an FRB measurement. Credit: Tsai, et al

If the FRB light path passes relatively close to a massive object such as a star, the light can be gravitationally lensed around the object. From the width of the lensing, we have an idea of its relative distance to the FRB source. When the FRB light passes from the intergalactic medium to the more dense interstellar medium of our galaxy, there is a brightening effect known as scintillation, which gives us another distance measure A bit of geometry then allows us to calculate the Hubble parameter.

Based on their calculations, the authors estimate that a single lensed FRB observation would allow them to pin down the Hubble parameter to within 6% accuracy. With 30 or more events, they should be able to increase their precision to a fraction of a percent uncertainty. This would put it on par with other methods. This should be achievable given current and planned FRB telescopes.

New observation methods such as this are the only way we are going to resolve the Hubble tension. Hopefully, we will solve this mystery, and perhaps it will point us to a radically new understanding of cosmic evolution.

Reference: Tsai, Anna, et al. “Scintillated microlensing: measuring cosmic distances with fast radio bursts.” arXiv preprint arXiv:2308.10830 (2023).

The post Measuring Distances in the Universe With Fast Radio Bursts appeared first on Universe Today.

Categories: Science

CERN Wants to Build an Enormous New Atom Smasher: the Future Circular Collider

Mon, 02/12/2024 - 2:14am

One of my favourite science and engineering facts is that an underground river was frozen to enable the Large Hadron Collider (LHC) to be built! On its completion, it helped to complete the proverbial jigsaw of the Standard Model with is last piece, the Higgs Boson. But that’s about as far as it has got with no other exciting leaps forward in uniting gravity and quantum physics. Plans are now afoot to build a new collider that will be three times longer than the LHC and it will be capable of smashing particles together with significantly more energy. 

In the past few decades, particle colliders have become a key tool for unraveling the mysteries of the universe at the fundamental level. The Large Hadron Collider (LHC), was a game changer and, with an amazing 27km circumference became the world’s most powerful collider. There are now plans to increase the number of collisions to try and improve its input to understanding the Universe but even with this ‘High Luminosity’ phase, CERN (European Council for Nuclear Research) wants to go even further and build a new collider!

If colliders like LHC are to play a part in high energy physics over the coming years then energy thresholds need to pushed beyond current capabilities. The Future Circular Collider (FCC) study has looked into various collider designs, envisaging a research infrastructure housed within a 100km underground tunnel. This ambitious project is promising a physics program that will take high energy research into the next century. 

There are a number of challenges that face the design and engineering of the new tunnel however; it must steer clear of geologically interesting areas, optimise future collider efficiency, allow for connectivity with the LHC, and adhere to social and environmental impacts of the surface buildings and infrastructure. Choosing ‘where to put it’ seems to be quite the challenge so a range of layout options are being considered, guided by CERN’s intent to avoid the impact on the area.

Within the FCC tunnel (which looks like it will be placed beneath ring-shaped underground tunnel located beneath Haute-Savoie and Ain in France and Geneva in Switzerland) will be two colliders that will work together sequentially. The first phase is scheduled for inauguration around mid-2040s and comprises an electron-positron collider (FCC-ee). The hope is that it will give unparalleled precision measurements and unveil physics beyond the standard model. Following hot on its heels will be the proton-proton collider (FCC-hh) which will surpass the energy capability of LHC eightfold!

It’s an exciting prospect that FCC will push particle collision to energies of 100 TeV in the hope of uncovering new realms of physics. To achieve the goal however, new technological advances will be required and to that end, over 150 universities from around the world are exploring the options. 

Source : Feasibility Study into new Super Collider

The post CERN Wants to Build an Enormous New Atom Smasher: the Future Circular Collider appeared first on Universe Today.

Categories: Science

Webb Can Directly Test One Theory for Dark Matter

Sat, 02/10/2024 - 5:07pm

What is it about galaxies and dark matter? Most, if not all galaxies are surrounded by halos of this mysterious, unknown, but ubiquitous material. And, it also played a role in galaxy formation. The nature of that role is something astronomers are still figuring out. Today, they’re searching the infant Universe, looking for the tiniest, brightest galaxies. That’s because they could help tell the tale of dark matter’s role in galactic creation.

An international team of astronomers led by UCLA’s Smadar Naoz is doing simulations of early galaxy formation. Their computer programs track the circumstances of galactic births not long after the Big Bang. These “hot off the press” computer models include some new wrinkles. They take into account previously neglected interactions between dark matter and the primordial “stuff” of the Universe. That would be hydrogen and helium gas. The result of the simulations: tiny, bright galaxies that formed more quickly than in computer models that didn’t include those motions. Now astronomers just need to find them, using JWST, in an effort to see if their theories of dark matter hold up.

Dark Matter Interactions with Supersonic Baryonic Matter

How would interactions between baryonic matter and dark matter make a difference? Here’s one likely story: in the early Universe, clouds of gas moved at supersonic speeds past clumps of dark matter. It bounced off the dark matter. Eventually, after millions of years, the gaseous material fell back together to form stars in a blast of star birth. The team’s simulations track the formation of those galaxies right after the Big Bang.

A composite model of matter distribution in the Universe (with dark matter overlay) in a galaxy formation simulation made by the TNG Collaboration.

Naoz’s team thinks that the existence of those smaller, brighter, more distant galaxies could confirm the so-called “cold dark matter” model. It suggests that the Universe was in a hot dense state containing only gases after the Big Bang. Over time, it evolved to a lumpy distribution of galaxies (and eventually galaxy clusters). Along the way, stars and galaxies formed, but the earliest steps likely depend on gravitational interaction with dark matter. If the supersonic interactions that Naoz’s team modeled actually happened, then those little galaxies would be the result.

Simulating Galaxy Formation and Dark Matter Influence

JWST has seen some pretty early galaxies during its time in operation. It hasn’t detected the very earliest ones—yet. However, the images it HAS provided are tantalizing hints at what might exist in earlier epochs and could provide insight into the role of dark matter. So, it makes sense that astronomers want to push its view back in time as far as they can. And, that means looking for bright patches of light that existed a few hundred million years after the Big Bang.

Artist conception of starbursting galaxies in the early universe. Stars and galaxies are shown in the bright white points of light, while dark matter and gas are shown in purples and reds. Early gas clouds bounced past dark matter clumps, only to clump together again under dark matter’s gravity, sparking off star formation. Credit: Aaron M. Geller/Northwestern/CIERA + IT-RCDS

“The discovery of patches of small, bright galaxies in the early universe would confirm that we are on the right track with the cold dark matter model because only the velocity between two kinds of matter can produce the type of galaxy we’re looking for,” said Naoz. “If dark matter does not behave like standard cold dark matter and the streaming effect isn’t present, then these bright dwarf galaxies won’t be found and we need to go back to the drawing board.”

In a paper by the team member and first author Claire Williams (published in Astrophysical Journal Letters) the team suggests that scientists using JWST begin to look for galaxies that are much brighter than expected. If they exist, that will likely prove the interactions occurred early in cosmic time. If none can be found, then maybe scientists still might not understand dark matter interactions. The big question to answer is, if they exist, then how did they form so quickly and why are they so bright?

Streaming Through Dark Matter Corridors

Let’s examine that by looking at the role of dark matter. The standard cosmological model says that the gravitational pull of clumps of dark matter in the early Universe attracted ordinary matter. Eventually, that caused stars to form, followed by galaxies. Dark matter is thought to move more slowly than light. So, astronomers predicted that the star- and galaxy-formation processes happened very gradually. At least, that’s what earlier simulations suggest.

But, what if something else was going on more than 13 billion years ago? How would that change things? It was a time before the first galaxies formed. But, it was a time when ordinary matter in the form of large overdensities of hydrogen and helium gas streamed through the expanding Universe. It bounced off slower-moving clumps of dark matter and outran its gravitational pull, at least for a time. Then, the baryonic matter massed together again, under the influence of dark matter. That’s when the star birth fireworks began.

This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-alpha emission. Scientists look to this and other young galaxies to understand the role that dark matter plays in early cosmic history.

“While the streaming suppressed star formation in the smallest galaxies, it also boosted star formation in dwarf galaxies, causing them to outshine the non-streaming patches of the universe,” Williams said. Essentially, the accumulated gas began to fall together after millions of years. That led to a huge burst of star formation. Lots of massive hot, young stars began to shine, out-brilliancing the stars in other small galaxies. Ultimately what this means is that since dark matter is impossible to “see”, those brightly shining patches of galaxies could be indirect evidence of its existence. And, they’d prove the role dark matter played in the creation of galaxies.

Finding Those Bright Patches

Nobody’s seen exactly what Naoz and the team are looking for—yet. Once they do, it will go a long way toward providing insight into the role of cold dark matter. “The discovery of patches of small, bright galaxies in the early universe would confirm that we are on the right track with the cold dark matter model because only the velocity between two kinds of matter can produce the type of galaxy we’re looking for,” said Naoz.

Of course, JWST is a perfect telescope to help see these galaxies. It should be able to peer into regions of the Universe where tiny infant galaxies are brighter than astronomers expect them to be. That extreme luminosity will help JWST spot them, showing them as they looked at a time when the Universe was only a few hundred million years old. Because dark matter is impossible to study directly, searching for those bright patches of baby galaxies in the early Universe could offer an effective test for theories about dark matter and its role in shaping the first galaxies.

For More Information

Bright Galaxies Put Dark Matter to the Test
The Supersonic Project: Lighting Up the Faint End of the JWST UV Luminosity Function

The post Webb Can Directly Test One Theory for Dark Matter appeared first on Universe Today.

Categories: Science

“Seeing” the Dark Matter Web That Surrounds the Coma Cluster

Sat, 02/10/2024 - 12:53pm

According to our predominant cosmological models, Dark Matter makes up the majority of mass in the Universe (roughly 85%). While it is not detectable in visible light, its influence can be seen based on how it causes matter to form large-scale structures in our Universe. Based on ongoing observations, astronomers have determined that Dark Matter structures are filamentary, consisting of long, thin strands. For the first time, using the Subaru Telescope, a team of astronomers directly detected Dark Matter filaments in a massive galaxy cluster, providing new evidence to test theories about the evolution of the Universe.

The team consisted of astronomers from the Department of Astronomy and the Center for Galaxy Evolution Research (CGER) at Yonsei University and the Department of Physics and Astronomy at the University of California Davis (UC Davis). Their results appeared in a paper, “Weak-lensing detection of intracluster filaments in the Coma cluster,” on January 5th, 2024, in Nature Astronomy. As the team explained, Subaru revealed the terminal ends of dark matter filaments in the Coma Cluster spanning millions of light years.

Hubble Space Telescope offers a cosmic cobweb of galaxies and invisible dark matter in the cluster Abell 611. Credit: ESA/Hubble, NASA, P. Kelly, M. Postman, J. Richard, S. Allen

Our accepted cosmological models predict that galaxy clusters grow at the intersection of Dark Matter filaments that make up the large-scale structure of the Universe (“cosmic web”) and extend for tens of millions of light-years. While this hypothesis is supported by observations of the distribution of galaxies and gas (i.e., baryonic or “visible” matter) in the Universe, there have been no direct detections of the dark matter component of intracluster filaments (ICFs) until now. Using the Subaru Telescope, the Yonsei-led team searched for signs of dark matter filaments in the Coma Cluster.

This cluster is located 321 million light-years away in the direction of the constellation Coma Berenices and contains over 1,000 identified galaxies. It is also one of the largest and closest galaxy clusters, which makes it a good candidate for looking for faint signs of Dark Matter. However, its proximity also makes it difficult to observe the entire cluster. But thanks to the Subaru Telescope’s combination of high sensitivity, high resolution, and wide field of view, the team was able to detect weak-lensing effects that indicated the presence of ICFs in the Coma Cluster.

In short, the team observed how light was amplified by Dark Matter strands that stretched for millions of light years. This is the first time these strands have been confirmed directly, providing new evidence for Dark Matter and a means of testing cosmological theories.

Further Reading: Subaru Telescope

The post “Seeing” the Dark Matter Web That Surrounds the Coma Cluster appeared first on Universe Today.

Categories: Science

NASA Launches a New Mission to Study the Effects of Climate Change

Sat, 02/10/2024 - 10:25am

NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite successfully launched and reached on Thursday, February 10th. The mission took off from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida, at 1:33 am EST 10:33 pm (PST) atop a SpaceX Falcon 9 rocket. About five minutes after launch, NASA confirmed that ground stations on Earth had acquired a signal from the satellite and were receiving data on its operational status and capabilities post-launch. For the next three years, the mission will monitor Earth’s ocean and atmosphere and study the effects of climate change.

Specifically, PACE was designed to study how the ocean and atmosphere exchange carbon dioxide and how microscopic particles (aerosols) in our atmosphere might fuel phytoplankton growth in the ocean. The data it accumulates will be used to identify the extent and duration of harmful algae blooms and extend NASA’s long-term observations of our changing climate. As NASA Administrator Bill Nelson expressed in an agency press release:

“Congratulations to the PACE team on a successful launch. With this new addition to NASA’s fleet of Earth-observing satellites, PACE will help us learn, like never before, how particles in our atmosphere and our oceans can identify key factors impacting global warming. Missions like this are supporting the Biden-Harris Administration’s climate agenda and helping us answer urgent questions about our changing climate.”

The PACE satellite deploying in orbit. Credit: NASA

The satellite will perform oceanic measurements using its hyperspectral ocean color instrument, allowing researchers to study oceans and bodies of water in the visible, ultraviolet, and near-infrared wavelengths. This will enable scientists to track the distribution of phytoplankton and determine which communities are present on a daily, global scale from space. This will be a first for scientists and coastal resource managers, who will use the data to forecast the health of fisheries, track harmful algal blooms, and identify changes in the marine environment.

The spacecraft also carries the Hyper-Angular Rainbow Polarimeter 2 (HARP2), a wide-angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces; and the Spectro-polarimeter for Planetary Exploration (SPEX), a compact remote sensing instrument for measuring and characterizing aerosols in the atmosphere. These will detect how sunlight interacts with particles in the atmosphere and allow scientists to measure air quality on local, regional, and global scales.

Said Karen St. Germain, the director of the Earth Science Division, part of the Science Mission Directorate at NASA Headquarters:

“Observations and scientific research from PACE will profoundly advance our knowledge of the ocean’s role in the climate cycle. The value of PACE data skyrockets when we combine it with data and science from our Surface Water and Ocean Topography mission ushering in a new era of ocean science. As an open-source science mission with early adopters ready to use its research and data, PACE will accelerate our understanding of the Earth system and help NASA deliver actionable science, data, and practical applications to help our coastal communities and industries address rapidly evolving challenges.” 

NASA once compared this image of phytoplankton surrounding Gotland to Vincent Van Gogh’s “Starry Night.” Credit: Landsat

One of the chief concerns about climate change is how Earth’s oceans are affected by rising temperatures and increased air pollution. This includes rising sea levels, increased acidity, loss of habitats (like coral reefs) and biodiversity. With PACE, scientists can study how phytoplankton populations are also affected, which play a key role in the global carbon cycle. These organisms absorb carbon dioxide from the atmosphere and convert it into their cellular material, which drives larger aquatic global ecosystems that provide critical resources for countless species (including humans).

“It’s been an honor to work with the PACE team and witness firsthand their dedication and tenacity in overcoming challenges, including the global pandemic, to make this observatory a reality,” said Marjorie Haskell, the PACE program executive at NASA Headquarters. “The passion and teamwork are matched only by the excitement of the science community for the data this new satellite will provide.”

“After 20 years of thinking about this mission, it’s exhilarating to watch it finally realized and to witness its launch. I couldn’t be prouder or more appreciative of our PACE team,” added Jeremy Werdell, a PACE project scientist at NASA’s Goddard Space Flight Center. “The opportunities PACE will offer are so exciting, and we’re going to be able to use these incredible technologies in ways we haven’t yet anticipated. It’s truly a mission of discovery.”

Further Reading: NASA

The post NASA Launches a New Mission to Study the Effects of Climate Change appeared first on Universe Today.

Categories: Science

The Event Horizon Telescope Zooms in on a Black Hole's Jet

Sat, 02/10/2024 - 8:38am

Although supermassive black holes are common throughout the Universe, we don’t have many direct images of them. The problem is that while they can have a mass of millions or billions of stars, even the nearest supermassive black holes have tiny apparent sizes. The only direct images we have are those of M87* and Sag A*, and it took a virtual telescope the size of Earth to capture them. But we are still in the early days of the Event Horizon Telescope (EHT), and improvements are being made to the virtual telescope all the time. Which means we are starting to look at more supermassive black holes.

The latest observations focus on a black hole region known as 3C 84, or Perseus A. It is a radio-bright source in a galaxy more than 200 million light-years away. Even the latest iteration of the EHT can’t resolve the horizon glow of the black hole as we’ve done with M87* and Sag A*, but it can see the bright region surrounding the black hole, where magnetic fields are particularly intense.

A wide multi-wavelength composite view of NGC 1275. Credit: Marie-Lou Gendron-Marsolais (Université de Montréal), Julie Hlavacek-Larrondo (Université de Montréal), Maxime Pivin Lapointe

The 3C 84 black hole is located in the galaxy NGC 1275, which is part of the Perseus cluster. The galaxy is not just distant, it also has a central region rich in dust, which shrouds the black hole. Optical light can’t penetrate the region, but radio light can. The Event Horizon Telescope can also capture the polarization of radio light coming from the area. This is important because charged particles within a strong magnetic field emit polarized light. By mapping this polarization astronomers can study magnetic fields.

One focus of this work is to see how supermassive black holes can generate powerful jets that stream from the black hole at nearly the speed of light. Magnetic fields are key. As ionized matter falls into a black hole it can bring with it strong magnetic fields. These fields can pin to the accretion disk of a black hole, which intensifies fields in the region that it becomes difficult for the black hole to capture more matter. This is known as a magnetically arrested disk.

One idea is that as the magnetically arrested disk rotates around the black hole, magnetic field lines become twisted, winding ever tighter and trapping magnetic energy. The release of this energy through magnetic realignment could power the formation of ionized jets. While such a magnetic realignment hasn’t been observed, this study shows that we might be able to capture such an event.

Reference: Paraschos, G. F., et al. “Ordered magnetic fields around the 3C 84 central black hole.” Astronomy & Astrophysics 682 (2024): L3.

The post The Event Horizon Telescope Zooms in on a Black Hole's Jet appeared first on Universe Today.

Categories: Science

Pages