You are here

Universe Today Feed

Subscribe to Universe Today Feed feed Universe Today Feed
Space and astronomy news
Updated: 11 hours 23 min ago

Surprise! Japan’s SLIM Moon Lander Wakes Up After a Freezing Night

Sun, 02/25/2024 - 11:51pm

Japan’s space agency didn’t expect its wrong-side-up SLIM moon lander to revive itself after powering down for a circuit-chilling lunar night on Feb. 1. But that’s exactly what happened.

“Last night, a command was sent to SLIM and a response received, confirming that the spacecraft has made it through the lunar night and maintained communication capabilities!” the SLIM mission team reported today in a posting to X / Twitter.

Japan's SLIM Moon lander is, amazingly, alive into its second lunar day! Temperatures are currently too high for anything other than brief communication, but JAXA is preparing to conduct further science observations with SLIM in the near future. https://t.co/7L8y4VAm7Z

— Andrew Jones (@AJ_FI) February 26, 2024

This wasn’t SLIM’s first resurrection: The boxy spacecraft touched down and tumbled onto its side on Jan. 19-20, settling in a position where its solar arrays couldn’t charge up its batteries. To conserve power, mission managers put the probe into hibernation and waited for the sun’s rays to hit the panels at a more favorable angle.

The team was able to revive the lander and get a few days’ worth of science data before putting it back into hibernation. Mission managers thought that might have been the end. During the 14-day lunar night, surface temperatures were expected to fall to about 200 degrees below zero Fahrenheit (-130 degrees Celsius) — a deep-freeze that was colder than what SLIM was designed to endure.

The lunar night ended days ago. After giving SLIM’s solar panels a chance to charge up the batteries again, the team at the Japan Aerospace Exploration Agency decided to check in — and got the good news. The circuitry is warm again. Actually, it’s hot: SLIM’s team members said that when the lander resumed contact, some of its equipment was hotter than 212 degrees Fahrenheit (100 degrees Celsius). That’s too hot for their liking.

“Communication with SLIM was terminated after a short time, as it was still lunar midday and the temperature of the communication equipment was very high,” the mission team reported. “Preparations are being made to resume operations when instrument temperatures have sufficiently cooled.”

Based on that information, it sounds as if SLIM (whose acronym stands for “Smart Lander for Investigating Moon”) would be able to get in only a few days of work before the team has to put it to sleep again for the next lunar night. But that’s better than nothing. During SLIM’s previous opportunity to do some science, it made multispectral observations of its surroundings near Shioli Crater — including an assortment of rocks that were nicknamed after canine breeds.

SLIM’s remarkable revival may also boost the hopes of the team behind Intuitive Machines’ Odysseus lander, which touched down near the moon’s south pole last week and is expected to be in operation until lunar sunset about a week from now. Like SLIM, Odysseus made an off-kilter landing. Like SLIM, Odysseus was equipped with electronics that weren’t designed to survive the lunar night. And like SLIM, Odysseus will nevertheless get a wakeup call after the coming night has ended — just in case its circuits are more resilient than its designers thought.

The post Surprise! Japan’s SLIM Moon Lander Wakes Up After a Freezing Night appeared first on Universe Today.

Categories: Science

Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge

Sun, 02/25/2024 - 9:26pm

Does Saturn’s largest moon, Titan, possess the necessary ingredients for life to exist? This is what a recent study published in Astrobiology hopes to address as a team of international researchers led by Western University investigated if Titan, with its lakes of liquid methane and ethane, could possess the necessary organic materials, such as amino acids, that could be used to produce life on the small moon. This study holds the potential to help researchers and the public better understand the geochemical and biological processes necessary for life to emerge throughout the cosmos.

Along with its liquid lakes of methane and ethane, Titan is also strongly hypothesized to possess a subsurface liquid water ocean like Saturn’s icy moon, Enceladus, and Jupiter’s icy moon, Europa. For the study, the researchers used data from impact cratering from comets to estimate the number of organic molecules that could relocate from Titan’s surface to its subsurface liquid water ocean. The team hypothesized that when comets strike Titan’s surface, their icy materials would melt from the heat of the impact and mix with the surface organics, resulting in a unique mixture. However, the heavier liquid water would then sink to the subsurface, slowly filling the subsurface ocean over time.

Artist’s cutaway illustration displaying Titan’s subsurface ocean (blue). (Credit: NASA/JPL)

After accounting for a presumed annual number of cometary impacts on Titan’s surface throughout its billions of years of existence, the researchers then calculated how much water would make its way from the surface to the subsurface ocean. In the end, the team concluded that the amount of glycine, which is the most basic amino acid that forms the proteins to create life, was measured at no greater than 7,500 kilograms/year (16,530 pounds/year). This amount approximately equals the size of a smaller African forest elephant, hence indicating number of organic materials that exist on Titan is quite miniscule.

“One elephant per year of glycine into an ocean 12 times the volume of Earth’s oceans is not sufficient to sustain life,” said Dr. Catherine Neish, who is an associate professor in the Department of Earth Sciences at Western University and lead author of the study. “In the past, people often assumed that water equals life, but they neglected the fact that life needs other elements, in particular carbon.”

While Dr. Neish’s study presents somewhat dire implications for finding life on Titan, this study comes on the heels of a recent investigation into how organic hazes on ancient Earth could have contained the necessary building blocks of life, including nucleobases and amino acids, which could hold implications for finding life on Titan due to the moon’s hazy atmosphere. For this study, the researchers used laboratory experiments to determine that “warm little ponds” on ancient Earth could host nucleobases. Both studies offer profound insights into the processes responsible for both creating and sustaining life beyond Earth, and further research is undoubtedly required to better understand these processes.

One such research opportunity that could help solidify these studies could be NASA’s upcoming Dragonfly mission, which is a quadcopter designed to search Titan’s surface for signs of potential habitability with Dr. Neish assigned as a mission co-investigator. Dragonfly currently has a scheduled launch date of July 2028, arriving at Saturn’s largest moon sometime in 2034. While Dragonfly will not be the first aircraft on another world, as that honor goes to NASA’s Ingenuity Mars Helicopter, it will be the first aircraft to land and operate in the outer solar system. Dragonfly will launch more than 20 years after the European Space Agency’s Huygens probe landed on Titan in January 2005, beaming back images of rounded rocks that could have formed from liquid processes.

What new discoveries will scientists make about Titan and its potential for life in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge appeared first on Universe Today.

Categories: Science

What Kinds of Astronomy Could Be Done With a Telescope on the Moon?

Sun, 02/25/2024 - 4:40pm

For decades, astronomers have said that one of the most optimal places to build large telescopes is on the surface of the Moon. The Moon has several advantages over Earth- and space-based telescopes that make it worth considering as a future home for giant observatories. A new paper lists all the advantages, including how telescopes on the lunar surface wouldn’t be blocked by an atmosphere or impacted by wind, and how the low gravity would allow gigantic structures to be built that could be upgraded over time by astronauts.

“Progress on the big questions in astronomy, such as life on certain exoplanets or dark matter, will ultimately require high angular resolution, a large collecting area and access to the full optical spectrum,” write French astronomers Jean Schneider, Pierre Kervella, and Antoine Labeyrie. “All astronomy will benefit from the advantages provided by the localization on the Moon.”  

And even though it might be decades before we have a permanent presence on the Moon, the astronomers suggest we should start with small telescopes now.

Graphic depiction of A Lunar Long-Baseline Optical Imaging Interferometer: Artemis-enabled Stellar Imager (AeSI). Credit: Kenneth Carpenter

Over the years, scientists and engineers have proposed various ideas for lunar observatories as part of the NASA Innovative Advanced Concepts program. Back in 2005 there was a proposal for a deep-field infrared observatory near one of the lunar poles using a rotating liquid mirror. Earlier this year, a team from NASA’s Goddard Space Flight Center proposed a design for a lunar Long-Baseline Optical Imaging Interferometer (LBI) for imaging at visible and ultraviolet wavelengths. Additionally, astronomers have advocated building radio telescopes on the far side of the Moon, since this “radio-quiet” zone always faces away from Earth and would provide the perfect location to study a variety of astronomical phenomena that can’t be observed in low radio frequencies from our planet, or even by Earth-orbiting space telescopes.

In their new paper, Schneider, Kervella and Labeyrie say that Moon offers a combination of three distinct advantages for astronomical observing. Its lack of atmosphere allows access to the entire spectrum, including the visible, ultraviolet, and infrared. Astronomers wouldn’t have to deal with atmospheric turbulence, and the Moon’s low gravity and absence of wind make it possible to install extremely large telescopes with very large instruments. This is impossible for satellites in orbit. Additionally, telescopes on the Moon would allow for the instruments to be upgraded and to have a very long lifetime, which is impractical for space satellites due to their limited amount of fuel.

“The Moon offers the possibility of installing large telescopes or interferometers with instruments larger than those on orbiting telescopes,” the astronomers write.

Using a variety of observational techniques, from photometry to high contrast and high angular resolution imaging, the astronomers suggested several ambitious science cases that could be tackled,  including observations of our own Solar System – including our own planet Earth — as well as distant exoplanets and possible exomoons. They add that very high angular resolution would allow for the imaging of exoplanet transits or even the stellar glint on exo-ocean.

An artist’s conception of a potentially-habitable exomoon. Credit: NASA

In the extragalactic domain, telescopes on the Moon could allow for the study of the distribution of dark matter or observing the gravitational lensing of quasars. Other lunar telescopes could investigate the unexplored Dark Ages of the early universe, a time before and during the formation of the very first stars and galaxies.

The best location for a lunar telescope depends on two factors: the physical conditions of the site (temperature, soil quality, solar illumination) and its scientific objectives.

“For example, telescopes pointing towards Earth must be placed on the near side of the Moon,” they said. “From the point of view of target observability, they can be placed almost anywhere. At the lunar poles, only half the sky is visible, but all the time. At the lunar equator, the whole sky is visible, but only half the time. For observations of or towards the Earth, the optimum is not far from the lunar equator.”

However, putting observatories on the lunar surface does present several problems, including incessant dust, the proclivity for incoming meteoroids, or dealing with other surprises like lunar seismology (Moonquakes).  

With the ultimate science goals above in mind, the astronomers said that a small 30 cm to 1 meter class telescope will explore significant science cases.

Even though this first lunar telescope would be a prototype, it would still be astronomically valuable. It could perform observations that would be complimentary to the James Webb Space Telescope or the Hubble Space Telescope. But for the future, a 20-meter mirror would provide resolution 3 times greater than the JWST, and by integrating, or leaving the “shutter” open for long periods, objects 100 times fainter could be observed.

Further reading: Astronomy from the Moon in the next decades: From Exoplanets to Cosmology in Visible Light and Beyond

The post What Kinds of Astronomy Could Be Done With a Telescope on the Moon? appeared first on Universe Today.

Categories: Science

The Kuiper Belt is Much Bigger Than We Thought

Sun, 02/25/2024 - 4:39pm

NASA’s New Horizons spacecraft is just over 8.8 billion km away, exploring the Kuiper Belt. This icy belt surrounds the Sun but it seems to have a surprise up its sleeve. It was expected that New Horizons would be leaving the region by now but it seems that it has detected elevated levels of dust that are thought to be from micrometeorite impacts within the belt. It suggests perhaps that the Kuiper Belt may stretch further from the Sun than we thought! 

The Kuiper Belt is found beyond the orbit of Neptune and is thought to extend out to around 8 billion km. Its existence was first proposed in the mid-20th century by Gerard Kuiper after whom the belt has been named.  It’s home to numerous icy bodies and dwarf planets and offers valuable insight into the formation and evolution of the Solar System. 

Launched by NASA in January 2006 atop an Atlas V rocket, the New Horizon’s spacecraft embarked on its mission to explore the outer Solar System. The primary objective was to perform a close flyby of Pluto, which it did 9.5 years after it launched, and continue on to explore the Kuiper Belt.

New Horizons completed its flyby of Pluto in 2015, and has been travelling through the Kuiper Belt since. As it travels through the outer reachers of the region, almost 60 times the distance from Earth to the Sun, its Venetia Burney Student Dust Counter (SDC) has been counting dust levels. The instrument was constructed by students at the Laboratory for Atmospheric Space Physics at the University of Colorado Boulder. Throughout New Horizon’s journey, SDC has been monitoring dust levels giving fabulous insight into collision rates among objects in the outer Solar System. 

The New Horizons instrument payload that is currently doing planetary science, heliospheric measurements, and astrophysical observations. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The dust particle detections announced in a recent paper published in the Astrophysical Journal Letters by lead author Alex Doner are thought to be frozen remains from collisions between larger Kuiper Belt Objects (KBOs). The results were a real surprise and challenged the existing models that predicted a decline in dust density and KBO population. It seems that the belt extends many billions of miles beyond the current estimates or maybe even that there is a second belt! 

The results came from data gathered over a three year period during New Horizon’s journey from 45 to 55 astronomical units (where 1 astronomical unit is the average distance between the Sun and Earth). While New Horizon’s was gathering data about dust, observatories such as the 8.2-meter optical-infrared Subaru Telescope in Hawaii have been making discoveries of new KBOs.  Together these findings suggest the Kuiper Belt objects and dust may well extend a further 30 AUs out to about 80 AUs from the Sun. 

New Horizons is now in its extended mission and hopefully has sufficient power and propellant to continue well into the 2040s. At its current velocity that will take the spacecraft out to about 100 AU from the Sun so the research team speculate that the SDC could identify the transition point into interstellar space. 

Source : NASA’s New Horizons Detects Dusty Hints of Extended Kuiper Belt

The post The Kuiper Belt is Much Bigger Than We Thought appeared first on Universe Today.

Categories: Science

A Planetary Disk in the Orion Nebula is Destroying and Replenishing Oceans of Water Every Month

Sun, 02/25/2024 - 10:13am

Planet-forming disks are places of chaotic activity. Not only do planetesimals slam together to form larger worlds, but it now appears that the process involves the destructive recycling of water within a disk. That’s the conclusion from scientists studying JWST data from a planetary birth crèche called d203-506 in the Orion Nebula.

The data they studied suggest that an amount of water equivalent to all of Earth’s oceans is created and replenished in a relatively short period—about a month. According to study co-lead Els Peeters at Western University in Canada, it was relatively easy to discover this process in the protoplanetary disk. “This discovery was based on a tiny fraction of our spectroscopic data,” she said. “It is exciting that we have so much more data to mine and I can’t wait to see what else we can find.”

The Orion Nebula is a vast active star- and planet-forming region and the d203-506 protoplanetary disk lies within it at a distance of about 1,350 light-years away from Earth. Astronomers study the nebula to understand all aspects of star birth since there are so many newborn stars there. In addition, many are surrounded by disks of gas and dust, called protoplanetary disks (proplyds, for short). Those regions are excellent places to observe planet-formation processes, and particularly the interplay between the young stars and their disks.

The Orion Nebula is one of the most studied objects in the sky. Many of its protostars and their planetary disks likely contain water in some form. Image: NASA The Water Cycle of a Proplyd

We all know that water is an important ingredient for life. It certainly played a role in creating and sustaining life on our planet. As it turns out, water is a significant fraction of the materials in a proplyd. In the infant Solar System, water existed throughout our proplyd long before any of the planets formed, largely in their icy form, either as icy bodies or locked into asteroids and planetesimals. It also exists in interstellar space.

This view of Earth’s horizon by an Expedition 7 crewmember onboard the International Space Station. A new study suggests that Earth’s water didn’t all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

Most of Earth’s water got delivered to the forming planet over millions of years. It melted or outgassed to form the oceans, rivers, and lakes we see today. But, some fraction of the water in our system’s birth disk probably went through a “freeze-thaw” cycle within the disk. That happened when the Solar System was still just a disk of gas and dust. The water was essentially destroyed and then re-formed at higher temperatures.

We can’t see that effect anymore in our system. But, astronomers can point telescopes at other proplyds to see if the same process happens there. That’s what Peeters and her team did. They used JWST to look at d203-506. There, bright young stars flood the nearby regions in the proplyd with intense ultraviolet radiation. The UV breaks up water molecules to form hydroxyl molecules and that process also releases infrared light. JWST can search out that light and report back on how much hydroxyl is in the birth cloud. The team estimates that the process in d203-506 regularly destroys and replenishes about an Earth oceans-full of water each month.

Formation of the Solar System Implications

The d203-506 system is currently forming new worlds, but it began as a cloud of gas and dust without a star. That’s exactly how our own Solar System began—as a cloud of gas and dust more than 4.5 billion years ago. The cloud it formed from was a cold, dark nebula containing some amount of water ice, or water-rich material. Something nudged the cloud to coalesce into a region of higher density, and that continued to shrink in on itself under the force of gravity. Temperatures rose, and eventually, a protostar began to form. Ultraviolet from the Sun irradiated the birth cloud, and that led to a similar water-destroying and replenishing activity. Heat and radiation from the Sun also forced lighter elements to migrate out to cooler regions in the system.

So, d203-506 makes a great analog to study the water cycle in the infant Solar System. Based on this JWST data, it’s very likely that water in Earth’s oceans went through this same process. Eventually, that water made its way to the planetesimals and icy bodies that helped form the worlds of the Solar System.

The icy bodies of the outer solar system probably didn’t experience the same extremes of heating, destruction, and replenishment. That’s because they migrated out to (or already existed at) great enough distances that the irradiation from the Sun didn’t have the same effect. That’s one reason planetary scientists are also interested in sampling those distant bodies. Their “primordial” water ices are a good sample of what conditions were like in the original nebula before it coalesced to form the Sun and planets.

For More Information

Researchers Find Destruction of Oceans’ Worth of Water per Month in Orion Nebula
OH as a Probe of Warm-water Cycle in Planet-forming Disks (journal link)
OH as a Probe of Warm-water Cycle in Planet-forming Disks (arXiv link)

The post A Planetary Disk in the Orion Nebula is Destroying and Replenishing Oceans of Water Every Month appeared first on Universe Today.

Categories: Science

Brrr. JWST Looks at the Coldest Brown Dwarf

Sat, 02/24/2024 - 7:08pm

What are the atmospheric compositions of cold brown dwarf stars? This is what a recent study published in The Astronomical Journal hopes to address as an international team of researchers used NASA’s James Webb Space Telescope (JWST) to investigate the coldest known brown dwarf star, WISE J085510.83?071442.5 (WISE 0855). This study holds the potential to help astronomers better understand the compositions of brown dwarf stars, which are also known as “failed stars” since while they form like other stars, they fail to reach the necessary mass to produce nuclear fusion. So, what was the motivation behind using JWST to examine the coldest known brown dwarf star?

“The coldest brown dwarfs are brightest at infrared wavelengths and extremely faint and difficult to observe at visible wavelengths, so they are very well suited for JWST,” Dr. Kevin Luhman, who is a professor in the Department of Astronomy and Astrophysics at Penn State University and lead author of the study, tells Universe Today. “The target of our paper, WISE 0855, is one of the most appealing targets of any kind for JWST because it is the coldest brown dwarf and is very close to our solar system (the fourth closest system). It is such an obvious object to observe with JWST that it was selected (by multiple teams) for guaranteed time observations with all of the instruments on JWST.”

Dr. Luhman was responsible for discovering WISE 0855, which is located approximately 7.43 light-years from Earth, announcing his findings in a 2014 paper published in The Astrophysical Journal Letters. He concluded that WISE 0855 exhibited a surface temperature of approximately 250 Kelvin (K), henceforth dubbing WISE 0855 as the coldest known brown dwarf star. For context, our Sun’s surface temperature is just under 5800 K, making WISE 0855’s surface temperature less than 5 percent of our Sun. Additionally, Dr. Luhman is responsible for discovering the third closest system, Luhman 16, which is a binary brown dwarf system located approximately 6.5 light-years from Earth.

For this study, the researchers used JWST’s Near Infrared Spectrograph (NIRSpec) instrument to examine the atmospheric composition of WISE 0855, to include making new measurements of the surface temperature, which the team concluded is 285 K using several computer models for their calculations. They also attempted to detect phosphine (PH3), which they note has been identified in Y-class brown dwarf stars, along with searching for evidence of water ice clouds based on previous ground-based research. Therefore, what are the most significant results from this study?

“As discussed in our paper, the spectrum produced by NIRSpec is far superior to previous spectroscopy of WISE 0855, which allows much better characterization of its atmosphere, and better testing of theoretical models for cool, planet-like atmospheres,” Dr. Luhman tells Universe Today. “For instance, the NIRSpec data show that WISE 0855 does not have phosphine (PH3) in its atmosphere, unlike Jupiter’s atmosphere, which is difficult to explain. In addition, there has been a debate in previous studies about whether WISE 0855 shows evidence of water ice clouds (it should be just cold enough that it could have water ice in its atmosphere). We find that the data can be reproduced reasonably well with models that do not have clouds, so it remains unclear whether water ice clouds are present.”

The study mentions how better models and unpublished spectroscopy data from JWST’s Mid-Infrared Instrument (MIRI) could help identify the presence of water ice clouds, with Dr. Luhman telling Universe Today how another team of researchers used NIRSpec in November 2023 to identify spectroscopy variances over time that could contribute to this, as well. As noted, brown dwarf stars are considered “failed stars” since they do not become large enough to produce nuclear fusion like our Sun. Therefore, what is the importance of studying brown dwarf stars?

Dr. Luhman tells Universe Today, “Brown dwarfs are important because they allow us to study the process of star formation in an extreme range of masses (below 10 Jupiter masses), and they allow us to study cool atmospheres that may be similar to those of gas giant planets.”

Artist’s impression of a brown dwarf star, which displays cloudy atmospheric dynamics of a planet and the leftover light of an almost-star. (Credit: NASA/ESA/JPL)

WISE 0855 does not currently possess any known exoplanets, with exoplanets orbiting brown dwarf stars being incredibly rare finds. One example includes a 2004 study published in Astronomy & Astrophysics identified exoplanet, 2M1207b, orbiting at approximately 55 astronomical units (AU) from its brown dwarf parent star, and is located approximately 170 light-years from Earth. A few years later, a 2008 study published in The Astrophysical Journal identified MOA-2007-BLG-192Lb, which was the first exoplanet discovered orbiting a brown dwarf star at a much smaller distance, only 0.62 astronomical units (AU), and is located approximately 3,000 light-years from Earth. But with so few exoplanets being discovered around brown dwarf stars, what can brown dwarf stars teach us about finding life beyond Earth?

“Brown dwarfs are primarily relevant to studies of gas giant planets, and such planets are unlikely to harbor life since they lack solid surfaces, so brown dwarfs may not tell us much about the prospects of life beyond Earth,” Dr. Luhman tells Universe Today. “But astronomers do speculate about whether life might be possible on planets that orbit brown dwarfs. The main complication of that scenario is that brown dwarfs steadily fade and cool over time, so the temperature of an orbiting planet also would change over time, which might make it difficult for life to survive for billions of years.”

What new discoveries will astronomers make about brown dwarf stars in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Brrr. JWST Looks at the Coldest Brown Dwarf appeared first on Universe Today.

Categories: Science

Cosmic Dust Could Have Helped Get Life Going on Earth

Sat, 02/24/2024 - 10:38am

Life on our planet appeared early in Earth’s history. Surprisingly early, since in its early youth our planet didn’t have much of the chemical ingredients necessary for life to evolve. Since prebiotic chemicals such as sugars and amino acids are known to appear in asteroids and comets, one idea is that Earth was seeded with the building blocks of life by early cometary and asteroid impacts. While this likely played a role, a new study shows that cosmic dust also seeded young Earth, and it may have made all the difference.

Although we’ve long known that cosmic dust accumulated on early Earth, it’s not been seen as a major source for early life because of how it accumulates. With comet and asteroid impacts, a great deal of prebiotic material is present at the site of the impact. Dust, on the other hand, is scattered across Earth’s surface rather than accumulating locally. However, the authors of this new work noted that cosmic dust can accumulate and be concentrated in sedimentary deposits, and wanted to see how that might play a role in the early appearance of terrestrial life.

How cosmic dust may have seeded Earth. Credit: Walton, et al

Using estimates of the rate of cosmic dust accumulation in the early period of Earth and computer simulations of how that dust could accumulate in sediment layers over time, the team looked at how concentrated deposits might form. One of the things they noticed was that while cometary impacts could create a local spike in prebiotic material, the amount deposited by cosmic dust was much higher. They also found that the melting and freezing of glacial areas could significantly increase the concentration of chemicals from the dust. For example, for early sub-glacial lakes, the concentration of prebiotic chemistry from dust would have been much higher than that found at impact sites. This means that cosmic dust could have played a much larger role in the appearance of life than impacts.

There is still much we have to learn about early life on Earth and how life can form from prebiotic chemistry, but it is clear that life on Earth is only possible because of extraterrestrial chemistry. From dust came the building blocks of life, and so we and every living thing on Earth can trace its lineage back to the early chemistry of dust in the solar system.

Reference: Walton, Craig R., et al. “Cosmic dust fertilization of glacial prebiotic chemistry on early Earth.” Nature Astronomy (2024): 1-11.

The post Cosmic Dust Could Have Helped Get Life Going on Earth appeared first on Universe Today.

Categories: Science

Odysseus Moon Lander Is Tipped Over But Still Sending Data

Fri, 02/23/2024 - 6:53pm

The bad news is that Intuitive Machines’ Odysseus lander is tipped on its side after getting tripped up during its touchdown near the south pole of the moon. The good news? The plucky robotic spacecraft is nevertheless able to send back data.

Mission managers at the Houston-based company and at NASA, which is paying $118 million to support Odysseus’ space odyssey, are working on ways to maximize the scientific payback over the next nine or 10 days. “The vehicle is stable, near or at our intended landing site,” Intuitive Machines CEO Steve Altemus said today during a post-landing briefing at NASA’s Johnson Space Center. “We do have communications with the lander … so that’s phenomenal to begin with.”

Just by surviving the descent a day earlier, Odysseus made it into the history books as the first commercial lander to arrive safely on the moon — and the first U.S.-built spacecraft to do so since the Apollo 17 mission in 1972.

It wasn’t easy: Mission managers discovered during a pre-landing maneuver that a safety lock on Odysseus’s laser range-finding system hadn’t been disengaged prior to the probe’s Feb. 15 launch. That rendered the system inoperable.

Altemus said that when he told mission director Tim Crain that the spacecraft would have to land autonomously without its range-finders, “his face got absolutely white, because it was like a punch in the stomach that we were going to lose the mission.” Fortunately, Crain and other mission team members figured out a way to reprogram Odysseus to make use of an experimental laser range-finding system that was included among NASA’s payloads.

“In normal software development for spacecraft, this is the kind of thing that would have taken a month of writing down the math, cross-checking it with your colleagues, doing some simple calculations to prove the theory by putting it into a simulation, running that simulation 10,000 times evaluating performance,” Crain said. “Our team basically did that in an hour and a half. And it worked.”

Crain said it was serendipitous that the problem was identified during the pre-landing attempt to activate the range-finders. “We would have probably been five minutes to landing before we would have realized that those lasers weren’t working, if we had not had that fortuitous event,” he said. “So, serendipity is absolutely the right word.”

The range-finder issue wasn’t the only challenge: Odysseus came in for a landing faster than projected, with a downward velocity of 6 mph and sideward velocity of 2 mph. Altemus said the telemetry suggests that one of the lander’s feet caught on something when it touched down, tipping the phone booth-sized spacecraft over onto its side. Based on its current attitude, Odysseus may be hung up on a rock, stuck in a crevasse or lying on a slope.

Intuitive Machines CEO Steve Altemus uses a scale model of the Odysseus lander to show how far the spacecraft is tipped over on the moon’s surface. (NASA via YouTube)

On the day of the landing, Intuitive Machines said Odysseus was upright, but today Altemus said that mistaken assessment was based on “stale telemetry” from the lander’s fuel gauges.

Even though the lander is in an off-kilter position, some of its solar arrays are able to generate power, and some of its antennas are in the right orientation to communicate with ground stations back on Earth, Altemus said.

“We do have antennas, however, that are pointed at the surface, and those antennas are unusable for transmission back to Earth,” he added. “And so, that really is a limiter. Our ability to communicate and get the right data down, so that we get everything we need for the mission, I think, is the most compromised from being on its side.”

Mission managers are working to increase the flow of data — including imagery that could show definitively how the lander is lying and whether there’s any damage.

“As we get more telemetry and turn more things on, we’ll be updating you over the coming days [about] the analysis and the reconstruction of the landing,” Altemus said.

He said NASA’s Lunar Reconnaissance Orbiter is due to fly over the landing area over the weekend and capture views from above. That should help Intuitive Machines and NASA figure out how close Odysseus came to its landing target, near a crater known as Malapert A.

Odysseus’s primary mission is to collect data about the environment in the lunar south polar region. That area is of growing interest because its permanently shadowed craters are thought to contain reserves of water ice that could support future moon bases. NASA is planning to send a crew of astronauts to the lunar south polar region in 2026.

A ‘spicy’ mission to the moon

The past year has demonstrated just how tough it is to put a robotic lander on the moon. Last month, a different private company called Astrobotic missed its chance for a lunar landing when its Peregrine spacecraft developed a propellant leak after launch. Like Intuitive Machines, Astrobotic is providing commercial lunar delivery services for NASA.

Moon landing attempts by Russia’s space agency and Japan’s iSpace venture also fell short. On the plus side, India successfully sent a lander and a rover to the lunar surface last August. And in an eerie foreshadowing of Odysseus’ mission, the Japanese Aerospace Exploration Agency’s SLIM lander made it to the moon — but tumbled onto its side.

Altemus acknowledged that Odysseus, which is named after a long-wandering hero in Greek mythology, didn’t exactly encounter smooth sailing during its own odyssey. “It was quite a spicy seven-day mission to get to the moon,” he said.

NASA’s deputy associate administrator for exploration, Joel Kearns, praised Intuitive Machines for pulling it off.

“Let me congratulate Intuitive Machines for three major accomplishments,” Kearns said. “The first is … for having the first successful soft landing on the moon by the United States since 1972. The second is for being the first non-governmental commercial organization to actually touch down safely on the surface of the moon. And the third is, we’re having a touchdown point 80 degrees south latitude, much closer to the south pole of the moon than any earlier U.S. robotic or human explorers.”

Kearns said NASA has already received valuable data from Odysseus’ transit to the moon, “and we’re looking forward to get even more data as Intuitive Machines finishes the checkout of Odysseus.”

What’s ahead for Odysseus?

Altemus said it looks as if all of the active payloads should be able to keep collecting data. The only payload in an awkward position is a cube containing an array of mini-sculptures, which is on the lander’s downward-facing side, he said.

A camera system called EagleCam presents a special case: EagleCam was designed to be deployed during the lander’s descent and snap “selfies” of the touchdown, but because of the issue with the range-finding system, the payload had to stay put. Mission managers are currently planning to have the stationary lander eject EagleCam onto the surface to take pictures.

The end of Odysseus’s mission is already drawing nigh. Crain said the lander’s solar arrays will no longer be able to generate power when the sun sets at the landing site.

“Once the sun sets on Odie, the batteries will attempt to keep the vehicle warm and alive, but eventually it’ll fall into a deep cold,” Crain said

The lander’s electronic circuits aren’t designed to survive that chilly lunar night. “Best-case scenario, we’re looking at another nine to 10 days,” Crain said. “Of course, the next time the sun illuminates the solar arrays, we’ll turn our dishes to the moon, just to see if the radios and the batteries and the flight computers survive that deep cold.”

The post Odysseus Moon Lander Is Tipped Over But Still Sending Data appeared first on Universe Today.

Categories: Science

Finally! Webb Finds a Neutron Star from Supernova 1987A

Fri, 02/23/2024 - 5:19pm

I can remember seeing images of SN1987A as it developed back in 1987. It was the explosion of a star, a supernova in the Large Magellanic Cloud. Over the decades that followed, it was closely monitored in particular the expanding debris cloud. Predictions suggested there may be a neutron star or even a black hole at the core but the resolution of the telescopes was insufficient to pick anything up. Now we have the James Webb Space Telescope and using its more powerful technology, signs of a neutron star have been detected. 

Supernova are among the most spectacular and intense explosions in the Universe that signal the end of a massive star’s life. They emit vast amounts of energy and radiation and at the moment of explosion, their light can exceed that of all the stars in the host galaxy put together.  There are the type II supernova and it is this type of phenomenon that brought 1987A to our skies. 

1987A occurred in the Large Magellanic Cloud which is approximately 160,000 light years away and was first observed in February 1987.  It continued to brighten until its luminosity peaked three months later in May. It even became visible to the naked eye, the first since Kepler’s Supernova of 1604. Before the visible light signals were detected, three observatories detected short bursts of neutrinos. The bursts were attributed to the supernova and they gave insight into the events leading up to the collapse. Since the event, astronomers have been searching for its existence. 

Part of the SMASH dataset showing an unprecedented wide-angle view of the Large Magellanic Cloud. Image Credit: CTIO/NOIRLab/NSF/AURA/SMASH/D. Nidever (Montana State University) Acknowledgment: Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

Observations of similar objects, like the supernova remnant in Taurus, the Crab Nebula , revealed a neutron star at the core of the debris field.  In the years that followed astronomers hunted for evidence but no direct evidence had been found.

The James Webb Space Telescope was focussed onto the 1987A remnant in July 2022, making it one of the earliest objects observed by Webb. The team used the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared instrument (MIRI). It was a tool that had been partly developed by the team that were hunting for the 1987A neutron star. MIRI was a wonderful tool that could simultaneously image an object whilst it was obtaining its spectrum! This allowed observers the ability to detect spectroscopic variations across the object while analysing the Doppler shift at various points to assess velocity at each position.

Artist impression of the James Webb Space Telescope

The team found a strong signal due to ionised argon that seemed to originate from a region around the site of the original 1987A event. Using Webb’s Near-Infrared Spectrograph (NIRSpec) they observed shorter wavelengths and detected even more ionised elements including five times ionised argon (this mean the argon atoms have lost five of their eighteen electrons). For these to be created, they required highly energetic photons and these had to come from somewhere. 

The conclusion is that their must be some source of high-energy radiation in the centre of the 1987A remnant. Of all the options discussed in their paper, lead author Claes Fransson of Stockholm University hints that only a few of the scenarios are likely but they all involve a young energetic neutron star. More observations are now required to follow up on this and probe the heart of the 1987A supernova remnant to see if the neutron star can finally be visually identified. 

Source : Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant

The post Finally! Webb Finds a Neutron Star from Supernova 1987A appeared first on Universe Today.

Categories: Science

A Capsule With Antiviral Drugs Grown in Space Returns to Earth

Fri, 02/23/2024 - 5:07pm

On Wednesday, February 21st, at 01:40 p.m. PST (04:40 p.m. EST), an interesting package returned to Earth from space. This was the capsule from the W-1 mission, an orbital platform manufactured by California-based Varda Space Industries, which landed at the Utah Test and Training Range (UTTR). Even more interesting was the payload, which consisted of antiviral drugs grown in the microgravity environment of Low Earth Orbit (LEO). The mission is part of the company’s goal to develop the infrastructure to make LEO more accessible to commercial industries.

Founded in 2020 by former SpaceX employees and Silicon Valley venture capitalists, Varda is part of a burgeoning space industry (aka. NewSpace) that is taking advantage of the declining cost of sending payloads to space. In particular, the company’s vision is to develop pharmaceuticals and other products in space and return them to Earth via their proprietary reentry capsules. Traditionally, conducting research in microgravity was something that could only be done by astronauts aboard the International Space Station (ISS).

Update #6 on Varda's W-1 Mission: pic.twitter.com/BNBqjbRxvX

— Varda Space Industries (@VardaSpace) February 21, 2024

With the growing accessibility enabled by reusable rockets and rideshare programs, the situation is rapidly changing. Many industries are looking to get in on this trend, ranging from biomedical and advanced materials research to manufacturing (to name a few). According to Varda, the processing in microgravity dramatically alters buoyancy, natural convection, sedimentation, and phase separation. This has the potential to produce high-quality drugs with more perfect crystalline structures due to the absence of gravitational stresses, leading to improved shelf life and effectiveness.

There’s also the potential that high-hypersonic flight testing has for the development of vehicle subsystems, thermal protective materials, navigation, communication, and sensors. As Varga CEO Will Bruey explained in November last year during an interview with Marketplace:

“We manufacture pharmaceuticals in space. Removing gravity allows us to make medicines you otherwise couldn’t on Earth. Gravity is kind of like a parameter. If you put a temperature knob on an oven, you create a whole world of new recipes and new food you can create. Similarly, if you can change gravity, you can also change the chemical process for drug formulations.”

The W-1 capsule launched in June 2023 atop a SpaceX Falcon 9 rocket as part of the company’s eight dedicated rideshare mission (Transporter-8). It spent the next eight months integrated with a Rocket Lab Photon spacecraft (the upper stage of the Electron rocket) that provided the capsule with power, propulsion, and navigation. Meanwhile, it developed a drug known as Ritonavir, an antiviral medication used to treat HIV and hepatitis C. Said Rocketlab CEO Peter Beck in a company statement:

“This mission was a phenomenal feat and impressive display of teamwork between the Rocket Lab and Varda teams to develop a unique and highly capable spacecraft, successfully demonstrate in-space manufacturing and bring back the capsule and finished pharmaceutical product – all on the first attempt,”

Varda Space’s off-Earth manufacturing capsule is evaluated by recovery personnel at the desert floor of the Utah Test and Training Range (UTTR). Credit: Varda Space/John Kraus

Now that the capsule has returned home, Varda will transport it back to their facilities in Los Angeles for post-mission analysis while the drug is shipped to their commercial partner. The company is also gearing up for its second launch, which will take place this summer and also rely on a Photon spacecraft. As Varda posted on their X page:

“The Ritonavir vials onboard the spacecraft will be shipped to our collaborators Improved Pharma for post-flight characterization. Additionally, data collected throughout the entirety of the capsule’s flight — including a portion where we reached hypersonic speeds — will be shared with the Air Force and NASA under a contract Varda has with those agencies.”

Further Reading: Varda Space Industries

The post A Capsule With Antiviral Drugs Grown in Space Returns to Earth appeared first on Universe Today.

Categories: Science

The Sun Gets Feisty, Throwing Off Three X-Class Flares Within 24 Hours

Fri, 02/23/2024 - 4:08pm

The Sun is heading toward solar maximum (which is likely to be about a year away) and as it does, there will be more sunspots, solar flares and coronal mass ejections. Over the last 24 hours there has been three, yes three X-class flares, the first peaking at X1.9, the second 1.7 and the final one a mighty 6.3. Flares of this magnitude caused radio blackouts, disruption to mobile phones and radio transmissions.  

The solar cycle is an 11 year recurring pattern of activity that is driven by the Sun’s magnetic field. The cycle begins with solar minimum with low levels of sunspot activity focussed mostly around the polar regions. This is followed by solar maximum with the increased sunspot activity that has migrated toward the lower latitudes. The cycle drives space weather too which is an outflow of charged particles from the Sun. Any increase or outbursts there can be an impact on satellites, radio communications and even the climate. 

Sunspots captured by NASAs Solar Dynamic Observatory

Among the different manifestations of solar activity, some of the most powerful are the solar flares. They vary in size and intensity and are caused by a sudden release of magnetic energy. They are powerful emitters of ultraviolet and X-ray radiation and can produce particles energetic enough to be hazardous to astronauts, spacecraft and their systems. Teams of scientists study solar flares to help understand their nature and behaviour. Doing so may help to find ways to limit their impact on our technology and space exploration. The most powerful of the flares are the X-class flares. 

These X-class flares are classified according to their peak X-ray levels within the 1 to 8 Angstroms (1 angstrom = 10-10 metres). The scale used typically spans from X1-X9 with each letter depicting a tenfold rise in intensity.  An X2 flare for example is twice as intense as an X1 flare and an X3 flare, ten times stronger than X2 and so it goes on. On rare occasions, flares can exceed X10 but this is a rare event indeed. 

Sunspot region 3590, which is at a relatively high solar latitude, has generated to X-class events. The initial flare reached its peak at X1.9 followed a few hours later by an X1.7 flare. Both of these flares resulted in a brief radio blackout on the day time side of Earth. 

It seems that just like busses, solar flares are few and far between then three come along all at once (this may be a UK joke so apologies to those based elsewhere). The very same sunspot region 3590 has not let us down as it has done it again. This time, it peaked at an impressive X6.3. It is also possible that there is a coronal mass ejection related to this flare but we won’t know for a day or two yet. Whilst the solar maximum may be only a year away, it seems the Sun has plenty of poke left in it and we may well be in for quite a year. 

Source : Two X-class solar flares only 7 hours apart and X6.3 Solar Flare

The post The Sun Gets Feisty, Throwing Off Three X-Class Flares Within 24 Hours appeared first on Universe Today.

Categories: Science

A Star Passed Through the Oort Cloud Less Than 500,000 Years Ago. It Wasn’t the Only One.

Fri, 02/23/2024 - 3:05pm

As stars in the Milky Way move through space, some of them have an unexpected effect on the Solar System. Over time, one comes closer to the Sun during its orbit in the galaxy. Some of them actually get within a light-year of our star and pass through the Oort Cloud. Such close flybys can affect the orbits of the outer planets and send cometary nuclei on a long inward rush to the Sun.

Astronomer Igor Yu Potemine at the Université Paul Sabatier in France, and his colleagues decided to look for likely “close-passing” stars and so-called “Nemesis” stars. Their tool was the SIMBAD database, which contains updated stellar parallaxes and proper motions from ESA’s Gaia satellite. They found a number of possible candidates. These stars drifted through the outer Oort Cloud and then went back out to interstellar space. Their actions set off gravitational perturbations responsible for cometary visits to the inner Solar System over the past billions of years. It’s important to note that gravitational influences from the giant planets, as well as something called the “Galactic tide” can also perturb objects in the Oort Cloud. For purposes of his study, Potemine restricted his search to nearby stars as candidates for Oort Cloud disturbances.

Stars and the Oort Cloud Region

When we look at which stars could cause a comet swarm from the Oort Cloud region, a couple of types of stellar candidates come to mind. The first is what some researchers call a “Nemesis” star. That’s the name for a still-theoretical companion star to the Sun. It’s thought to be a dwarf star that occasionally (like every 25-30 million years) passes too close to the Sun. That action sends a swarm of comets to the inner solar system. Astronomers continue to look for candidates for this solar Nemesis, although the search hasn’t identified “the one” as yet. They also look for other stars that periodically get too close to the Solar System and even pass through the inner regions of the Oort Cloud.

A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz’s Star and companion passed along the outer boundaries of our Solar System (Credit: NASA, Michael Osadciw/University of Rochester)

The Oort Cloud/outer solar system region is a still-largely unknown place. It’s not one monolithic cloud but several regions with populations of icy cometary bodies. The outer edge of the region could extend out 3.2 light-years away from the Sun. Inside the Oort Cloud is the Kuiper Belt, which also contains cometary bodies and a population of small worlds such as Pluto, Eris, Makemake, and others. There’s also a sort of intermediate population of cometary objects thought to exist between the Oort cloud and the Kuiper Belt, sometimes referred to as the Hills Cloud. This region may be populated with many more cometary nuclei than the actual Oort Cloud. So, there’s plenty of material “out there” for passing stars to perturb, and it’s likely many have in the billions of years that the Solar System has existed.

Typically, you can expect a star to pass through (or near) the Oort Cloud every hundred thousand years. Very close flybys (like within 52,000 AU, happen more rarely—about every nine million years. So, it’s a fairly regular occurrence in the long history of the Solar System. The star’s motion sets off gravitational disturbances that eventually jostle cometary nuclei out of their orbits in the cloud. These “long period” comets (named because of their extraordinarily lengthy orbits) eventually pass by the Sun and then head back out to the depths of the outer Solar System. The ones with the lengthiest orbits have only been recorded once or twice in human history. That’s because some orbits can be thousands of years long.

Lists of Likely Flyby Candidates

Patomine came up with several lists of likely “transgressor stars” from the SIMBAD search. Some are the so-called “Nemesis” objects and others are stars that have come closest to the Sun (within a light-year). Further research needs to be done to establish precise orbits and proper motions for all of the candidates. But, it’s interesting to look at a few of them in more detail.

Scholz’s star, a red dwarf, once came as close as 1 light-year to our Solar System. At that time, neanderthals were still around. Image: Credit: José A. Peñas/SINC

One of the Nemesis candidates is Scholz’s star. It’s a red dwarf, and likely grazed the edge of the Oort Cloud some 70,000 years ago, along with a companion brown dwarf. Currently, it’s about 22 light-years from the Sun and probably stirred up a swarm of comets that won’t get to the inner solar system for more than a million years. It’s also likely that its passage affected the orbits of Kuiper Belt objects. Others have also been studied, including the G-type star HD 7977. It’s currently about 247 light-years from Earth and made its close flyby some 2.8 million years ago.

Of course, there aren’t just past encounters to calculate. Other stars will come near in the future. One of the best-known examples of a close future passage is the star Gliese 710. It will fly past the Sun in about 1.29 million years at a distance of around 10,520 AU. It has a very good chance of passing through the Oort Cloud, which means it could very well perturb the Oort Cloud. That would send showers of comets toward the Sun for millions of years. Some researchers estimate it could result in about 10 naked-eye comets per year. Far from being a search for comets of the past, the hunt for stars passing close to the Sun could also predict an interesting future for observers on Earth thousands or millions of years from now.

For More Information

Stellar flybies within 1 ly from the Sun and stars passing through the Hills cloud
Gliese 710 Will Pass the Sun Even Closer

The post A Star Passed Through the Oort Cloud Less Than 500,000 Years Ago. It Wasn’t the Only One. appeared first on Universe Today.

Categories: Science

A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids

Fri, 02/23/2024 - 10:46am

Can we secure our place in the Solar System? Not in any absolute sense because nature can be very unpredictable. But we can make the effort to safeguard our civilization by cataloguing potentially dangerous asteroids. An upcoming space telescope will help.

NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) mission will launch no later than April 2025. The orbiting telescope will conduct a two-year all-sky survey in optical and infrared light. The main focus of the mission is to gather data on more than 300 million galaxies and 100 million stars in the Milky Way. But SPHEREx will also add to our knowledge of Potentially Hazardous Objects (PHOs).

A new paper examines SPHEREx’s capabilities and how the mission can contribute to Planetary Defense (PD.) Its title is “Planetary Defense Use of the SPHEREx Solar System Object Catalog.” It’s currently in pre-print, and the lead author is Carey Lisse from the Space Exploration Sector at the Johns Hopkins University Applied Physics Laboratory.

SPHEREx “provides a unique space-based opportunity to detect, spectrally categorize, and catalogue
hundreds of thousands of solar system objects at NEOWISE sensitivities,” the authors write. NEOWISE is NASA’s successful asteroid-finding mission that just reached ten years of operation and has found over 3,000 NEOs (Near-Earth Objects). “By leveraging SPHEREx data, scientists and decision-makers can enhance our ability to track and characterize PHOs, ultimately contributing to the protection of our planet,” the authors of the new paper explain.

Among the many calamities that have struck life on Earth, asteroid impacts are the most dramatic. About 66 million years ago, an asteroid struck Earth and wiped out the dinosaurs. That asteroid was about 10 km in diameter and wreaked havoc on Earth’s biosphere at the time. The odds of another asteroid strike are never zero, and less massive impactors could still alter civilization forever. It could cause unimaginable suffering and strife.

While some researchers are working on ways to destroy or deflect PHOs, others are working on cataloguing as many of them as they can. This is where SPHEREx comes in.

SPHEREx will follow the same type of orbit that NEOWISE does. It’s called a sun-synchronous polar orbit, and it means that the observatory will collect data from both the leading and trailing directions. That will allow SPHEREx to cover the range of latitudes in the entire sky every six months and to cover the ecliptic poles in each orbit.

This figure from the paper shows how SPHEREx will map the sky in infrared (left.) “Utilizing a sun-synchronous NEOWISE-like polar orbit, objects in the sky at ~90 deg elongation will be observed in each great circle,” the authors explain. “The Earth’s motion around the Sun advances the great circle’s longitude ~1 deg/day, taking data in both the leading/trailing (forward/ behind) directions means that the entire sky’s range of longitudes is covered in 6 months, with the ecliptic poles observed every orbit.” The panel on the right shows the Solar System objects SPHEREx will observe, excluding the Sun, Mercury, Venus, and the innermost Near-Earth Asteroids. Image Credit: Lisse et al. 2024

SPHEREx was built to address three main science goals: Measuring the Anisotropy of Cosmic Inflation,
Determining the History of Galaxy Formation, and Surveying Ices in Molecular Clouds. Detecting PHOs is its side hustle. But its powerful infrared capabilities mean it’ll do more than just detect them.

At the 10-second mark, this video shows how SPHEREx will orbit and how it will map the sky. NASA/JPL

When it comes to asteroid detection, we’re in a race against time. The pace may be slow, but it’s still a race and one we can win. Time may be on our side.

PHOs are defined as objects that come with 0.05 AU of Earth and have a magnitude of 22 or less. These objects are close enough to pose an impact risk and large enough to be catastrophic if they do strike Earth. Magnitude 22 corresponds to an object with an albedo of 0.14 and a size of about 140 meters. Though much, much less massive than the dinosaur-killing Chicxulub impactor, these objects can still cause widespread damage.

Scientists predict that one of the impactors should strike Earth every few ten thousand years. As a result, Congress instructed NASA to detect 90% of these NEOs. NASA’s made lots of progress, and with the commissioning of the Legacy Survey of Space and Time, they’ll likely reach the 90% goal in less than a decade.

NASA’s “Eyes on Asteroids” site maps the known Near-Earth asteroids (NEAs) and shows the population of these objects. Some are parent bodies of meteorites found on Earth. Courtesy NASA.

But SPHEREx will do more than detect PHOs, NEOs and NEAs. It will reveal crucial information that will allow us to prepare for their approach. “Accurate spectral categorization of NEOs is a key factor in assessing the threat from a potential impactor as well as developing effective mitigation strategies,” the researchers explain. “Succinctly, whether the impactor is made of rock, metal, or an icy organic mix is critical to know before one attempts to terminate the hazard (“know thy impactor”), and this determination is typically made using near-infrared spectrophotometry.”

The observatory will acquire millions of exposures of the sky, and they’ll be in 102 visual and infrared wavelengths. Some wavelengths will span the same range as NEOWISE but in 40 discrete channels rather than NEOWISE’s two channels. SPHEREx’s observations will also feature an additional 62 spectral channels beyond NEOWISE’s coverage. What does that add up to?

“SPHEREx measurements will be uniquely useful for spectral typing, quick object compositional characterization, population context, size/albedo determination, and temporal trending of objects in the
current epoch,” the authors explain. Spectral type, rotation states, albedo, and size are key factors in building up our planetary defence against asteroids and comets.

SPHEREx is an important step in safeguarding our home in the Solar System as best we can. Nature can throw a lot of powerful, vexing curveballs, and NASA’s efforts to detect them is foundational to developing ways to protect Earth.

SPHEREx will do more than find PHOs, and by characterizing them, its data could be the key to effective mitigation.

The post A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids appeared first on Universe Today.

Categories: Science

Finally! Blue Origin’s New Glenn Goes Vertical on the Launch Pad

Fri, 02/23/2024 - 2:09am

If you think about space travel and the means of escaping the confines of the Earth then most people, currently, are likely to think about the new Artemis project and the Space Launch System. That’s not the only new development though, Blue Origin have been working on their New Glenn rocket and finally we have got a glimpse of their new offering. The rocket was finally rolled onto the launch pad at Cape Canaveral for testing to commence and we may even see a launch later this year.

Blue Origin was founded in 2000 by the founder of Amazon, Jeff Bezos. It is American aerospace manufacturer based in Washington, USA and specialises in producing rocket engines for the Vulcan rocket and manufactures satellites, spacecraft and a variety of space based tech. Securing the deal to become the second provider of the Lunar lander for Artemis project, Blue Origin has most certainly become a major player in the space industry. 

Their latest announcement came with the incredible sight of the New Glenn vehicle rolling out onto Launch Complex 36 at Cape Canaveral. This was the first glimpse the world got of their new advanced heavy-lift vehicle which promises to support a number of different commercial customer missions and NASA’s Artemis program to get humans back to the Moon.

Space lovers will perhaps recognise the name Glenn from the first American to orbit the Earth, John Glenn. It stands an impressive 98m tall (only about 12m shorter than Saturn V used by the Apollo astronauts). It has an impressive 7m payload bay which is double the volume of most commercial launch capabilities available today. I don’t know about you but I struggle to visualise what that means but to give it context, Blue Origin state that it could accommodate three school busses! 

Apollo 11 launch using the Saturn V rocket

The first stage, like the Falcon rockets, are reusable and designed to be used for at least 25 launches.  They will land on a sea-based platform almost 1,000km downrange from the launch site. As with the Falcon systems, the reusability of the first stage helps to keep costs per launch down. 

Before the New Glenn could be lifted up onto the pad the journey started toward the end of 2023 when the first stage module was transported to the Integration Facility 15km away. The facility allowed the modules to be assembled in preparation for installing on the launch pad. Now the rocket is vertical, the coming weeks will see a series of tests from loading the cryogenic fuel into the seven BE-4 engines. These are the most powerful liquid oxygen and liquefied natural gas engines developed since Saturn V’s F1 engines. They will test pressure control and launch and ground systems in preparation for its first launch later this year.

Blue Origin are rather confident these tests will be a success though as they are already manufacturing several New Glenn vehicles with a full set of customers queueing up to use them. They include NASA, Project Kuiper (another global internet project to launch over 3,000 satellites into low Earth orbit), Telesat, Eutelsat and the US Space Force for National Security Space Launch programs.

Source : Blue Origin Debuts New Glenn on Our Launch Pad

The post Finally! Blue Origin’s New Glenn Goes Vertical on the Launch Pad appeared first on Universe Today.

Categories: Science

Solar Physics: Why study it? What can it teach us about finding life beyond Earth?

Thu, 02/22/2024 - 6:46pm

Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?

Prof Maria Kazachenko, who is a solar astrophysicist and assistant professor in the Astrophysical & Planetary Science Department at the University of Colorado, Boulder, tells Universe Today, “Solar physics studies how our Sun works, and our Sun is a star. We should understand how our home star works for various reasons. First, stars are the building blocks of our Universe.  Even we are made of stardust. Second, our Sun provides energy for life and affects our life here on Earth (space weather, digital safety, astronauts’ safety). So, to be safe we need to understand our star. Finally, the Sun is the only star where we could obtain high-quality maps of magnetic fields, which define stellar activity. To summarize, studying the Sun is fundamental for our space safety and for understanding the Universe.”

The field of solar physics dates to 1300 BC Babylonia, where astronomers documented numerous solar eclipses, and Greek records show that Egyptians became very proficient at predicting solar eclipses. Additionally, ancient Chinese astronomers documented a total of 37 solar eclipses between 720 BC and 480 BC, along with keeping records for observing visible sunspots around 800 BC, as well. Sunspots were first observed by several international astronomers using telescopes in 1610, including Galileo Galilei, whose drawings have been kept to this day.

Presently, solar physics studies are conducted by both ground- and space-based telescopes and observatories, including the National Science Foundation’s (NSF) Daniel K. Inouye Solar Telescope located in Hawai’i and NASA’s Parker Solar Probe, with the latter coming within 7.26 million kilometers (4.51 million miles) of the Sun’s surface in September 2023. But with all this history and scientific instruments, what are some of the benefits and challenges of studying solar physics?

Prof. Kazachenko tells Universe Today that some of the scientific benefits of studying solar physics include “abundant observations and many science problems to work on; benefits from cross-disciplinary research (stellar physics, exoplanets communities)” with some of the scientific challenges stemming from the need to use remote sensing, sometimes resulting in data misinterpretation. Regarding the professional aspects, Prof. Kazachenko tells Universe Today that some of the benefits include “small and friendly community, large variety of research problems relying on amazing new observations and complex simulations, ability to work on different types of problems (instrumentation, space weather operation, research)” with some of the professional challenges including finding permanent employment, which she notes is “like everywhere in science”.

Image of the Sun obtained by NASA’s Solar Dynamics Observatory (SDO) on June 20, 2013, with a solar flare discharging on the left side. (Credit: NASA/SDO)

As noted, the study of solar physics involves investigating space weather, which is when the solar wind interacts with the Earth, specifically with our magnetic field, resulting in the beautiful auroras observed in the high northern and southern latitudes. On occasion, the solar wind is strong enough to wreak havoc on satellites and even knock out power grids across the Earth’s surface. This was demonstrated with the Carrington Event on September 1-2, 1859, when fires at telegraph stations were reported across the globe, along with several strong aurora observations, as well. While this event occurred with the Earth’s magnetic field largely deflecting the incoming solar wind, life on this planet could be doomed without our magnetic field protecting us. Therefore, what can solar physics teach us about finding life beyond Earth?

Prof. Kazachenko tells Universe Today, “The Sun can tell us about stellar activity, including flares and coronal mass ejections that might be crucial for the creation of life on the planets. How frequent are these flares? How strong could they be? Why are some flares eruptive (leaving the star) and others confined (keeping erupted plasma on the star)? Why do we observe mostly confined flares on other stars? The Sun could also tell us about the science behind the long-term stellar evolution (stellar cycles, stellar dynamo).”

Image of a coronal mass ejection being discharged from the Sun. (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Like most scientific disciplines, solar physics encompasses researchers from a myriad of backgrounds, including the aforementioned exoplanet communities, but also includes standard physics, astrophysics, computer science, plasma physics, and fluid dynamics, just to name a few. It is through constant collaborative and innovative efforts from these backgrounds that researchers can study not only our own Sun, but suns in other solar systems throughout the cosmos. Therefore, what advice can Prof. Kazachenko offer upcoming students who wish to pursue studying solar physics?

“Be brave, ambitious, and work hard,” Prof. Kazachenko tells Universe Today. “Talk to students and scientists who work in the field and do not be afraid to contact scientists you would like to work with. Work on your math and communication skills.”

As noted, solar eclipses are an important facet of studying solar physics, as they have been both observed and documented for thousands of years by a myriad of civilizations across the globe. The Holy Grail of eclipses are total solar eclipses, which is when the Moon completely blocks out the Sun, offering solar physicists a rare opportunity to observe and study coronal mass ejections, which Prof. Kazachenko mentions could be vital to the creation of life. The upcoming total solar eclipse that will cross the United States in a couple of months will provide scientists with even greater opportunities to study the Sun’s many attributes, even more than the 2017 total solar eclipse. For this upcoming eclipse, Prof. Kazachenko plans to lead an expedition “Eclipses en la Frontera” to Eagle Pass, TX, with the National Solar Observatory’s Education & Public Outreach Team.

Prof. Kazachenko tells Universe Today, “We had such a wonderful time during the annular solar eclipse (in October 2023), so now we are coming back for totality!” 

Prof. Kazachenko (left of center) and CU Boulder graduate student, Marcel Corchado-Albelo (center), participating in an educational workshop on solar research at Sacred Heart Catholic Elementary School before the annular solar eclipse in October 2023 in Uvalde, TX. (Credit: Prof. Kazachenko) Image of the total solar eclipse August 21, 2017, above Madras, Oregon, and the same event will be occurring in April 2024, although in different parts of the United States. (Credit: NASA/Aubrey Gemignani)

Prof. Kazachenko continues, “The solar eclipse on April 8, 2024, is around the corner. It is a life-changing experience. Not because I am a solar physicist, but because it makes you feel like you are part of the Universe. The best place to see it in the US will be in Texas (e.g. San Antonio, Austin, or Dallas), as it might be cloudy in the rest of the eclipse path.”

How will solar physics help us better understand our place in the cosmos in the coming years and decades? Only time will tell, and this is why we do science!

As always, keep doing science & keep looking up!

The post Solar Physics: Why study it? What can it teach us about finding life beyond Earth? appeared first on Universe Today.

Categories: Science

If Hycean Worlds Really Exist, What are Their Oceans Like?

Thu, 02/22/2024 - 5:46pm

Astronomers have been on the hunt for a new kind of exoplanet in recent years – one especially suited for habitability. They’re called hycean worlds, and they’re characterized by vast liquid water oceans and thick hydrogen-rich atmospheres. The name was coined in 2021 by Cambridge astronomer Nikku Madhusudhan, whose team got a close-up look at one possible hycean world, K2-18b, using the James Webb Space Telescope in 2023. In a newly accepted paper this January, Madhusudhan and coauthor Frances Rigby examined what the internal structure of hycean planets might look like, and what that means for the possibility of finding life within.

Hycean worlds are unlike anything we have seen in our own solar system, expanding the very definition of a habitable planet. They tend to be much bigger than Earth-like planets, earning them the moniker ‘mini-neptunes’. Their size makes them easier to detect than smaller rocky worlds, and their thick atmospheres give them a wider habitable zone.

Those same properties also make them ideal candidates for spectroscopic analysis, where measuring the chemical composition of the atmospheres might reveal biosignatures.

In order to tease out the potential characteristics of a habitable hycean world, Rigby and Madhusudhan used a modeling tool called HyRIS to map out possible planetary structures. They limited their models to only allow for habitable temperatures and pressures at the ocean’s surface, where the water meets the air.

Even with those strict conditions in place, the results showed a wide variety of possible internal structures. The ocean depths of a habitable hycean world could range from 10s of kilometers deep to 1000s of kilometers (for comparison, Earth’s ocean averages about 3.7km deep).

One factor that potentially limits the habitability of these worlds is that they are likely to have a thick layer of ice between the ocean floor and the rocky core of the planet. On Earth, the weathering of the rocky seafloor produces nutrients that are essential to life – ice might inhibit that process. Nonetheless, there is still the possibility that these nutrients could be transported through the ice via convection, or delivered to the planet in other ways, like via comet and asteroid impacts or atmospheric condensation.

The study also looked at several real hycean world candidates, and among them, there are three that stand out as having good chances of habitability.

Although these three candidates orbit red dwarf stars – known for their violent, hostile solar flares – these planets’ stars are comparatively calm. They are TOI-270 d, TOI 1468 c, and TOI-732 c (TOI refers to planets observed by the TESS space telescope).

Each of these three planets is scheduled for observation by James Webb in its second year of observing, meaning we’re about to get a more detailed look at some exciting new exoplanets. Last year’s observation of K2-18b was just the beginning of hycean world research, and this recent paper will help astronomers constrain the possible internal structures of these worlds, and help determine the prospect of finding life on them.

Learn More:

Frances E. Rigby, Nikku Madhusudhan, “On the Ocean Conditions of Hycean Worlds,” ArXiv preprint.

Webb Discovers Methane, Carbon Dioxide in Atmosphere of K2-18 b.” NASA, September 2023.

The post If Hycean Worlds Really Exist, What are Their Oceans Like? appeared first on Universe Today.

Categories: Science

Intuitive Machines’ Odysseus Lander Sends Faint Signal From the Moon

Thu, 02/22/2024 - 5:30pm

Intuitive Machines‘ Odysseus lander made space history today — becoming the first commercial spacecraft to survive a descent to the moon, and the first U.S.-built spacecraft to do so since the Apollo 17 mission in 1972. But it wasn’t a trouble-free landing.

Ground controllers had a hard time establishing contact with the robotic lander just after the scheduled touchdown time of 6:23 p.m. ET (2323 UTC). Several minutes passed, and then Intuitive Machines mission director Tim Crain reported that there was a faint signal coming from Odysseus’ high-gain antenna.

“We’re not dead yet,” he said.

Your order was delivered… to the Moon! ?@Int_Machines' uncrewed lunar lander landed at 6:23pm ET (2323 UTC), bringing NASA science to the Moon's surface. These instruments will prepare us for future human exploration of the Moon under #Artemis. pic.twitter.com/sS0poiWxrU

— NASA (@NASA) February 22, 2024

A few minutes later, the IM-1 mission team decided that the signal was evidence enough that Odysseus was still operating.

“What we can confirm without a doubt is our equipment is on the surface of the moon, and we are transmitting,” Crain said. “So, congratulations, IM team, we’ll see how much more we can get from that.”

As mission team members applauded, Intuitive Machines CEO Steve Altemus radioed in with his congratulations. “I know this was a nail-biter, but we are on the surface and we are transmitting,” he said. “Welcome to the moon.”

“Houston, Odysseus has found its new home,” Crain replied.

What Odysseus was designed to do

Odysseus, which is named after a seafaring hero in Greek mythology, was launched from NASA’s Kennedy Space Center on Feb. 15. The mission’s objective was to deliver payloads from NASA and commercial customers to a spot near Malapert A crater in the lunar south polar region. That area of the moon is of high interest because its cratered terrain is thought to hold resources of water ice that could be eventually be used to supply crewed outposts.

NASA is paying Houston-based Intuitive Machines $118 million for the delivery under the terms of its Commercial Lunar Payload Services initiative.

The space agency’s payloads include a camera system that was designed to document the plumes of dust kicked up by the landing, an experimental radio navigation beacon, a radio-based fuel gauge, a laser range finder, a set of laser reflectors and a sensor that will study the moon’s electron plasma environment. Data from the experiments could help NASA plan for the Artemis program’s crewed lunar landings, which could start happening as soon as 2026.

The commercial payloads range from a box of 125 marble-sized moon sculptures and a digital data storage device to a mini-observatory that could capture pictures of the lunar surface and the Milky Way above. There’s also a camera system that was designed to be dropped off during the descent to take “selfie” pictures of the touchdown.

Backup systems come into play

Odysseus reached lunar orbit on Feb. 21, and went through a series of maneuvers today to descend from an altitude of 92 kilometers (57 miles).

NASA’s laser range finder, known as the Navigation Doppler Lidar or NDL, ended up playing a crucial backup role in guiding the descent. Just a couple of hours before landing, Intuitive Machines reported that controllers couldn’t get Odysseus’ own laser range finders to work — so they reprogrammed the lander to use NASA’s NDL system instead.

In the wake of the landing, Intuitive Machines’ mission control team went through a series of procedures aimed at resetting equipment and boosting the signal from Odysseus.

“After troubleshooting communications, flight controllers have confirmed Odysseus is upright and starting to send data,” Intuitive Machines reported in a posting to X / Twitter. “Right now, we are working to downlink the first images from the lunar surface.”

It's getting late over here, but #IM1 @Int_Machines landed on the moon and is alive!!!! Congratulations!??? Somewhat weaker signal than expected, but it's definitely there, switching antennas/radios and calling home. ????? pic.twitter.com/AwlQOvVQ78

— AMSAT-DL (@amsatdl) February 23, 2024

There’s a chance that Odysseus went off track during the final stages of the descent and ended up landing askew. That’s what happened a month ago when Japan’s SLIM spacecraft tumbled into an awkward position on its lunar landing site. SLIM’s off-kilter solar arrays were able to soak up enough power for an abbreviated round of science observations.

Even under the best of circumstances, the solar-powered Odysseus lander is expected to be in operation on the lunar surface for only seven days. The mission is slated to end when the sun drops below the lunar horizon and the circuit-chilling lunar night begins.

Past and future lunar robots

NASA’s deputy associate administrator for exploration, Joel Kearns, noted in advance of the landing that the odds for a completely successful commercial moon landing were slim.

“This is not an easy thing we’ve asked these companies to do, but if they’re successful, the up side for American exploration is just so great we have to try it,” Kearns said.

Last month, Pittsburgh-based Astrobotic missed out on sending its Peregrine lander to the lunar surface, due to a propellant leak that was detected after launch. The past year has also seen moon landing failures by Russia and a Japanese private venture, as well as successes by the Japan Aerospace Exploration Agency’s SLIM team and India’s space agency.

Still more commercial moon landing attempts are on NASA’s calendar: Intuitive Machines is already working on another lander that will drill for ice in the moon’s south polar region. Meanwhile, Astrobotic is getting set to send NASA’s VIPER rover to a spot near the south pole, and Firefly Aerospace is due to deliver 10 NASA payloads to Mare Crisium aboard its Blue Ghost lander.

NASA Administrator Bill Nelson accentuated the positive in a pre-recorded video message that was released on the assumption that Odysseus survived its descent to the surface.

“Today, for the first time in more than half a century, the U.S. has returned to the moon,” Nelson said. “Today, for the first time in the history of humanity, a commercial company, an American company, launched and led the voyage up there. Today is a day that shows the power and promise of NASA’s commercial partnerships. … This feat is a giant leap forward for all of humanity. Stay tuned.”

Stay tuned, indeed.

The post Intuitive Machines’ Odysseus Lander Sends Faint Signal From the Moon appeared first on Universe Today.

Categories: Science

Anti-Satellite Weapons Will Threaten Everyone’s Access to Space

Thu, 02/22/2024 - 4:49pm

It’s a headline straight out of the movies yet the White House has recently confirmed it believes that Russia is building space-based anti-satellite weapon! There seems to be no conclusive evidence what this might be but one option may be a nuclear bomb that would indiscriminately wipe out satellites within a huge volume of space! Not only would it devastate satellites but would cause more problems down on the surface and create a whole load of space junk. 

In a statement, the National Security Council spokesperson John Kirby said that he did not believe the weapon had an ‘active capability’ yet and further went on to say he did not believe it had even been deployed. He went on to say that the White House was monitoring Russian activity and would continue to take it very seriously. 

Launching such a nuclear weapon into space would violate the 1967 Outer Space Treaty which countries of the United Nations, including Russia, signed. It prohibits putting nuclear weapons or weapons of mass destruction into space, on the Moon or on any other celestial object. Such an act would likely prompt sanctions from other nations and further compound the situation faced by Russia following its invasion of Ukraine. Note that such a device wouldn’t even actually need to be used, just deploying it into space would be sufficient to violate the Treaty. 

A spokesperson from Moscow has denied the existence of such a program suggesting it was “malicious fabrication” that has been created by the American political teams. The Kremlin went on to suggest that such a fabrication might coerce the Congress to pass a $97 billion foreign aid bill which includes $60 million for Ukraine. 

Tempting though such a nuclear device might seem to any countries wishing to unleash devastation to other nations, the impacts can be far reaching. The destruction of any object in orbit will create a whole debris field with components ranging from a few millimetres to several centimetres. At the moment, there are several hundreds of millions of pieces of space debris being tracked from Earth. The high velocity items drifting around pose a threat to other satellites still in operation and even the International Space Station which has had to apply course directions to avoid collisions. 

Should Russia have, and launch and subsequently detonate a nuclear device in space, they would not only be putting themselves at risk of more sanctions but also be putting their own satellites at risk! It’s almost impossible to control the path of space debris so a detonation would generate more that would undoubtedly destroy some of Russia’s own satellites. 

It may be some time before we know for certain whether Russia are planning a nuclear capability in space. The one hope is that they recognise the risk to their own, and other supportive countries space assets. Taking out a bunch of US or western satellites is one thing but the subsequent debris taking out their own infrastructures and those of other supportive nations may have repercussions that are quite unpalatable.  Even if the space debris does not knock out other satellites, it is certainly going to make it even harder for us to travel beyond the confines of the Earth due to the sheer volume of high velocity fragments orbiting the planet.

Source : Russia’s space weapon: anti-satellite systems are indiscriminate, posing a risk to everyone’s spacecraft

The post Anti-Satellite Weapons Will Threaten Everyone’s Access to Space appeared first on Universe Today.

Categories: Science

Powerful Jets From a Black Hole are Spawning Star Clusters

Thu, 02/22/2024 - 1:10pm

Supermassive black holes are messy feeders, and when they’re gorging on too much material, they can hurl high-energy jets into the surrounding Universe. Astronomers have found one of the most powerful eruptions ever seen, emanating from a black hole 3.8 billion light-years away. The powerful jets are blowing out cavities in intergalactic space and triggering the formation of a huge chain of star clusters.

The black hole is part of a massive galaxy cluster, named SDSS J1531, which contains hundreds of individual galaxies, and all these galaxies have huge reservoirs of hot gas and dark matter. Using several telescopes for multiwavelength observations — including the Chandra X-ray Observatory, the Low Frequency Array (LOFAR) radio telescope, the Atacama Large Millimeter and submillimeter Array (ALMA), the Gemini North telescope’s Gemini Multi-Object Spectrograph (GMOS), and the Very Large Array (VLA) — astronomers were able to discern that two of the central galaxies were engaged in a major merger. The merger activated the supermassive black hole in the center of one of the large galaxies, which produced an extremely powerful jet. As the jet moved through space, it pushed the surrounding hot gas away from the black hole, creating a gigantic cavity.

The merger and the resulting jets from the black hole created a remarkable and stunning chain of 19 young stellar superclusters wound the two galaxies like a string of beads.

In their paper, the astronomers said the dynamic environment of SDSS J1531 offers an excellent laboratory to study the interplay between mergers, and their multiwavelength studies allowed them to uncover the origin and evolution of the “beads on a string” star formation complex.

“We’ve reconstructed a likely sequence of events in this cluster that occurred over a vast range of distances and times,” said co-author Grant Tremblay, from the Harvard & Smithsonian Center for Astrophysics CfA). “It began with the black hole a tiny fraction of a light-year across forming a cavity almost 500,000 light-years wide. This single event set in motion the formation of the young star clusters nearly 200 million years later, each a few thousand light-years across.”

A labeled view of the multiwavelength Image of SDSS J1531. Credit: X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk.

Chandra’s X-ray vision allowed the scientists to see wing-shaped emissions in bright X-rays, which traced dense gas near the center of SDSS J1531. The said these wings make up the edge of the cavity, and then LOFAR revealed radio waves from the remains of the jet’s energetic particles filling in the giant cavity. Together, these data provide compelling evidence of an ancient, massive explosion.

Osase Omoruyi, also from CfA who led the study, compared finding this cavity to unearthing a buried fossil.

“We are already looking at this system as it existed four billion years ago, not long after the Earth formed,” she said. “This ancient cavity, a fossil of the black hole’s effect on the host galaxy and its surroundings, tells us about a key event that happened nearly 200 million years earlier in the cluster’s history.”

This Hubble Space Telescope image from 2014 shows two galaxies (yellow, center) from the cluster SDSS J1531 found to be merging into one and a “chain” of young stellar super-clusters are seen winding around the galaxies’ nuclei. The galaxies are surrounded by an egg-shaped blue ring caused by the immense gravity of the cluster bending light from other galaxies beyond it. Credit: NASA/ESA/Grant Tremblay

You can learn more about a Hubble Space Telescope view of this supercluster back in 2014.

The astronomers said that some of the hot gas pushed away from the black hole eventually cooled to form cold and warm gas. The team thinks tidal effects from the two merging galaxies compressed the gas along curved paths, leading to the star clusters forming in the bead-like pattern.

Omoruyi and her colleagues could only see radio waves and a cavity from one jet, but black holes usually fire two jets in opposite directions. This led them to surmise that the radio and X-ray signals from the jet in the other direction might have faded to the point that they are undetectable.

“We think our evidence for this huge eruption is strong, but more observations with Chandra and LOFAR would clinch the case,” said Omoruyi. “We hope to learn more about the origin of the cavity we’ve already detected, and find the one expected on the other side of the black hole.”

The post Powerful Jets From a Black Hole are Spawning Star Clusters appeared first on Universe Today.

Categories: Science

We Could Snoop on Extraterrestrial Communications Networks

Thu, 02/22/2024 - 11:07am

The conditions for life throughout the Universe are so plentiful that it seems reasonable to presume there must be extra-terrestrial civilizations in the galaxy. But if that’s true, where are they? The Search for Extra-terrestrial Intelligence (SETI) program and others have long sought to find signals from these civilizations, but so far there has been nothing conclusive. Part of the challenge is that we don’t know what the nature of an alien signal might be. It’s a bit like finding a needle in a haystack when you don’t know what the needle looks like. Fortunately, any alien civilization would still be bound by the same physical laws we are, and we can use that to consider what might be possible. One way to better our odds of finding something would be to focus not on a direct signal from a single world, but the broader echos of an interstellar network of signals.

As noted in a 2022 paper on the arXiv, one physical constraint is that there is a great deal of dust and interstellar gas in the Milky Way. Since radio light penetrates gas and dust better than visible light, the signals sent between stars are likely to be microwave radio signals. Another fact is that if you are traveling between the stars you need to know where you are and where you are going. One way to do this is to use pulsars as navigational beacons. In the paper the author argues that these can be combined as a broadband radio signal from the hub of the alien civilization that contains x-ray pulsar navigation metadata (XNAV).

One of the biggest challenges of detecting stray alien signals is that they would likely be difficult to distinguish from random noise. Even simple signals such as television broadcasts rely upon a known protocol. Without that protocol, we can’t decipher the message. This is similar to the challenge of breaking the Enigma code during World War II. One of the breakthroughs came when it was realized that most messages contained a weather report, so the message likely contained the German word for weather. Metadata in an alien signal could serve a similar role. If we know radio signals should contain XNAV metadata, then we can use this as a starting point. In game theory this is known as a Shelling Point.

A 3-pulsar navigation system for an ET civilization. Credit: Ross Davis (2022)

The author outlines nine steps for how an interstellar civilization might construct a pulsar navigation system, and what the pattern of that network might be. By creating multiple scenarios, we might be able to recognize certain patterns as technosignatures. As the author notes, one limitation of this approach is that any metadata scenario we imagine is still based on how homo sapiens think, which might not be how an alien intelligence sees things.

All of this is speculative, but it’s worth considering. We will only recognize an alien signal if we better understand the forms they might take, and perhaps a few wild ideas like this one are exactly what we need.

Reference: Davis, Ross. “Finding the ET Signal from the Cosmic Noise.” arXiv preprint arXiv:2204.04405 (2022).

The post We Could Snoop on Extraterrestrial Communications Networks appeared first on Universe Today.

Categories: Science

Pages