You are here

Science

Neutron Stars Could be Capturing Primordial Black Holes

Universe Today Feed - Fri, 04/26/2024 - 1:48pm

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to explain this for years. One of the more interesting ideas comes from a team of astronomers in Europe and invokes dark matter, neutron stars, and primordial black holes (PBHs).

Astronomer Roberto Caiozzo, of the International School for Advanced Studies in Trieste, Italy, led a group examining the missing pulsar problem. “We do not observe pulsars of any kind in this inner region (except for the magnetar PSR J1745-2900),” he wrote in an email. “This was thought to be due to technical limitations, but the observation of the magnetar seems to suggest otherwise.” That magnetar orbits Sagittarius A*, the black hole at the core of the Milky Way.

An x-ray map of the core of the Milky Way showing the position of the recently discovered magnetar orbiting the supermassive black hole Sgr A*. Courtesy Chandra and XMM-Newton.

The team examined other possible reasons why pulsars don’t appear in the core and looked closely at matnetar formation as well as disruptions of neutron stars. One intriguing idea they examined was the cannibalization of primordial black holes by neutron stars. The team explored the missing-pulsar problem by asking the question: could neutron star-primordial black hole cannibalism explain the lack of detected millisecond pulsars in the core of the Milky Way? Let’s look at the main players in this mystery to understand if this could happen.

Neutron Stars, Pulsars, and Little Black Holes, Oh My

Theory suggests that primordial black holes were created in the first seconds after the Big Bang. “PBHs are not known to exist,” Caiozzo points out, “but they seem to explain some important astrophysical phenomena.” He pointed at the idea that supermassive black holes seemed to exist at very early times in the Universe and suggested that they could have been the seeds for these monsters. If there are PHBs out there, the upcoming Nancy Grace Roman Telescope could help find them. Astronomers predict they could exist in a range of masses, ranging from the mass of a pin to around 100,000 the mass of the Sun. There could be an intermediate range of them in the middle, the so-called “asteroid-mass” PBHs. Astronomers suggest these last ones as dark matter candidates.

Primordial black holes, if they exist, could have formed by the collapse of overdense regions in the very early universe. Credit M. Kawasaki, T.T. Yanagida.

Dark matter makes up about 27 percent of the Universe, but beyond suggesting that PBH could be part of the dark matter content, astronomers still don’t know exactly what it is. There does seem to be a large amount of it in the core of our galaxy. However, it hasn’t been directly observed, so its presence is inferred. Is it bound up in those midrange PBHs? No one knows.

The third player in this missing pulsar mystery is neutron stars. They’re huge, quivering balls of neutrons left over after the death of a supergiant star of between 10 and 25 solar masses. Neutron stars start out very hot (in the range of ten million K) and cool down over time. They start out spinning very fast and they do generate magnetic fields. Some emit beams of radiation (usually in radio frequencies) and as they spin, those beams appear as “pulses” of emission. That earned them the nickname “pulsar”. Neutron stars with extremely powerful magnetic fields are termed “magnetars”.

Pulsars are fast-spinning neutron stars that emit narrow, sweeping beams of radio waves. A new study identifies the origin of those radio waves. NASA’s Goddard Space Flight Center The Missing Pulsar Problem

Astronomers have searched the core of the Milky Way for pulsars without much success. Survey after survey detected no radio pulsars within the inner 25 parsecs of the Galaxy’s core. Why is that? Caizzo and his co-authors suggested in their paper that magnetar formation and other disruptions of neutron stars that affect pulsar formation don’t exactly explain the absence of these objects in the galactic core. “Efficient magnetar formation could explain this (due to their shorter lifetime),” he said, “But there is no theoretical reason to expect this. Another possibility is that the pulsars are somehow disrupted in other ways.”

Usually, disruption happens in binary star systems where one star is more massive than the other and it explodes as a supernova. The other star may or may not explode. Something may kick it out of the system altogether. The surviving neutron star becomes a “disrupted” pulsar. They aren’t as easily observed, which could explain the lack of radio detections.

If the companion isn’t kicked out and later swells up, its matter gets sucked away by the neutron star. That spins up the neutron star and affects the magnetic field. If the second star remains in the system, it later explodes and becomes a neutron star. The result is a binary neutron star. This disruption may help explain why the galactic core seems to be devoid of pulsars.

Using Primordial Black Hole Capture to Explain Missing Pulsars

Caizzo’s team decided to use two-dimensional models of millisecond pulsars—that is, pulsars spinning extremely fast—as a way to investigate the possibility of primordial black hole capture in the galactic core. The process works like this: a millisecond pulsar interacts in some way with a primordial black hole that has less than one stellar mass. Eventually, the neutron star (which has a strong enough gravitational pull to attract the PBH) captures the black hole. Once that happens, the PBH sinks to the core of the neutron star. Inside the core, the black hole begins to accrete matter from the neutron star. Eventually, all that’s left is a black hole with about the same mass as the original neutron star. If this occurs, that could help explain the lack of pulsars in the inner parsecs of the Milky Way.

Could this happen? The team investigated the possible rates of capture of PBHs by neutron stars. They also calculated the likelihood that a given neutron star would collapse and assessed the disruption rate of pulsars in the galactic core. If not all the disrupted pulsars are or were part of binary systems, then that leaves neutron star capture of PBHs as another way to explain the lack of pulsars in the core. But, does it happen in reality?

Missing Pulsar Tension Continues

It turns out that such cannibalism cannot explain the missing pulsar problem, according to Caizzo. “We found that in our current model PBHs are not able to disrupt these objects but this is only considering our simplified model of 2 body interactions,” he said. It doesn’t rule out the existence of PHBs, only that in specific instances, such capture isn’t happening.

So, what’s left to examine? If there are PHBs in the cores and they’re merging, no one’s seen them yet. But, the center of the Galaxy is a busy place. A lot of bodies crowd the central parsecs. You have to calculate the effects of all those objects interacting in such a small space. That “many-body dynamics” problem has to account for other interactions, as well as the dynamics and capture of PBHs.

Astronomers looking to use PBH-neutron star mergers to explain the lack of pulsar observations in the core of the Galaxy will need to better understand both the proposed observations and the larger populations of pulsars. The team suggests that future observations of old neutron stars close to Sgr A* could be very useful. They’d help set stronger limits on the number of PBHs in the core. In addition, it would be useful to get an idea of the masses of these PBHs, since those on the lower end (asteroid-mass types) could interact very differently.

For More Information

Revisiting Primordial Black Hole Capture by Neutron Stars
Searching for Pulsars in the Galactic Centre at 3 and 2 mm

The post Neutron Stars Could be Capturing Primordial Black Holes appeared first on Universe Today.

Categories: Science

5 extraordinary ideas about the mind and what it means to be conscious

New Scientist Feed - Fri, 04/26/2024 - 9:00am
To celebrate the launch of our new event series in the US, kicking off with a masterclass on the brain and consciousness, we have unlocked five incredible long reads
Categories: Science

Rare mutation that causes short stature may shed light on ageing

New Scientist Feed - Fri, 04/26/2024 - 9:00am
The genetic variant, which causes people to be insensitive to growth hormone, may also protect people from heart disease
Categories: Science

Scientists capture X-rays from upward positive lightning

Matter and energy from Science Daily Feed - Fri, 04/26/2024 - 8:01am
Researchers have for the first time recorded X-rays being produced at the beginning of upward positive lightning flashes; an observation that gives important insight into the origins of this rare -- and particularly dangerous -- form of lightning.
Categories: Science

Automated machine learning robot unlocks new potential for genetics research

Computers and Math from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Researchers have constructed a robot that uses machine learning to fully automate a complicated microinjection process used in genetic research.
Categories: Science

Alpacas are the only mammals known to directly inseminate the uterus

New Scientist Feed - Fri, 04/26/2024 - 8:00am
When alpacas mate, males deposit sperm directly into the uterus, a reproductive strategy not confirmed in any other mammals
Categories: Science

High-precision blood glucose level prediction achieved by few-molecule reservoir computing

Computers and Math from Science Daily Feed - Fri, 04/26/2024 - 8:00am
A collaborative research team has successfully developed a cutting-edge artificial intelligence (AI) device that executes brain-like information processing through few-molecule reservoir computing. This innovation utilizes the molecular vibrations of a select number of organic molecules. By applying this device for the blood glucose level prediction in patients with diabetes, it has significantly outperformed existing AI devices in terms of prediction accuracy.
Categories: Science

Professor resolves two decades of oxide semiconductor challenges

Matter and energy from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Successful development of high-performance amorphous P-type oxide semiconductor using tellurium-selenium composite oxide.
Categories: Science

Built-in bionic computing

Computers and Math from Science Daily Feed - Fri, 04/26/2024 - 8:00am
The use of pliable soft materials to collaborate with humans and work in disaster areashas drawn much recent attention. However, controlling soft dynamics for practical applications has remained a significant challenge. Researchers developed a method to control pneumatic artificial muscles, which are soft robotic actuators. Rich dynamics of these drive components can be exploited as a computational resource.
Categories: Science

More efficient molecular motor widens potential applications

Computers and Math from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.
Categories: Science

More efficient molecular motor widens potential applications

Matter and energy from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.
Categories: Science

Robotic nerve 'cuffs' could help treat a range of neurological conditions

Computers and Math from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Researchers have developed tiny, flexible devices that can wrap around individual nerve fibers without damaging them. The researchers combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.
Categories: Science

Robotic nerve 'cuffs' could help treat a range of neurological conditions

Matter and energy from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Researchers have developed tiny, flexible devices that can wrap around individual nerve fibers without damaging them. The researchers combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.
Categories: Science

Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes

Matter and energy from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Researchers co-led a study that will improve the detection of gravitational waves--ripples in space and time.
Categories: Science

Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes

Space and time from Science Daily Feed - Fri, 04/26/2024 - 8:00am
Researchers co-led a study that will improve the detection of gravitational waves--ripples in space and time.
Categories: Science

Japan’s Lunar Lander Survives its Third Lunar Night

Universe Today Feed - Fri, 04/26/2024 - 7:22am

Space travel and exploration was never going to be easy. Failures are sadly all too common but it’s wonderful to see missions exceed expectations. The Japanese Space Agency’s SLIM lunar lander was only supposed to survive a single day but it’s survived three brutal, harsh lunar nights and is still going. The temperatures plummet to -170C at night and the lander was never designed to operate into the night. Even sat upside down on the surface it’s still sending back pictures and data. 

The Japanese agency’s lunar lander known as SLIM (Smart Lander for Investigating the Moon) began its lunar journey on 19 January 2024 when it touched down on the surface of the Moon. Its mission was to test the lunar landing technology and to collect data about the surface geology. 

An artist’s conception shows Japan’s SLIM lander in its upended position on the lunar surface. (Credit: JAXA)

Unfortunately, soon after landing it became clear that the probe had landed at a strange angle, leaning forwards, resting on its face. The orientation of the solar panels was all wrong and it meant they could not generate as much electricity as expected allowing it to operate for a few hours just after dawn and just before sunset. 

Of course it is important to note that a day on the Moon lasts many days compared to a day here on Earth and so, the first night for SLIM began on 31 January. Surprisingly, SLIM survived the first long night where temperatures to -170 degrees. SLIM was never designed to survive the cold harsh nights on the Moon so it was with some surprise that it powered back up successfully on the 15 February. 

The operations team for SLIM were disbanded in March but to their surprise, after the second lunar night, a signal was received again. Surpassing everyones expectations it seems SLIM wasn’t going to give up yet and still sending images. The lander was even picked up after its second night by cameras on board the Chandrayaan-2 orbiter as it flew over. 

Just a few days ago on Wednesday 24 January, JAXA, the Japanese Aerospace Exploration Agency announced it had survived a third night on the freezing lunar surface. Using the plucky littler lander which measures just 1.5m x 1.5m x 2m, the agency hope to be able to learn more about the origin of the Moon by analysing the surface geology.

One of the fascinating elements to the mission was the pinpoint landing technology that was being tested. On descent, the lander would be able to recognise the craters using technology that has been developed by facial recognition systems. Using the data, it would be able to determine its location with pinpoint accuracy and perform a touch down with an accuracy of 100m. The landing was successfully accurate albeit slightly wobbly leaving the lander in a strange orientation. 

source : Japan’s moon lander wasn’t built to survive a week long lunar night. It’s still going after 3

The post Japan’s Lunar Lander Survives its Third Lunar Night appeared first on Universe Today.

Categories: Science

Asteroid that broke up over Berlin was fastest-spinning one ever seen

New Scientist Feed - Fri, 04/26/2024 - 6:00am
Before it shattered over Germany, the asteroid 2024 BX1 was clocked rotating once every 2.6 seconds – the fastest spin we have observed
Categories: Science

Global warming could make tides higher as well as raising sea levels

New Scientist Feed - Fri, 04/26/2024 - 4:00am
In addition to the overall rise in sea level, the heights of tides are also changing as the oceans warm and separate into more distinct layers
Categories: Science

Science-Based Satire: More Parents Turn to Kinesiology Diapers for Fussy Infants

Science-based Medicine Feed - Fri, 04/26/2024 - 4:00am

Are parents really turning to diapers made using kinesiology tape to help their fussy babies? Of course not. That would be incredibly silly, and profitable. This is satire.

The post Science-Based Satire: More Parents Turn to Kinesiology Diapers for Fussy Infants first appeared on Science-Based Medicine.
Categories: Science

Black Holes Can Halt Star Formation in Massive Galaxies

Universe Today Feed - Fri, 04/26/2024 - 3:14am

It’s difficult to actually visualise a universe that is changing. Things tend to happen at snails pace albeit with the odd exception. Take the formation of galaxies growing in the early universe. Their immense gravitational field would suck in dust and gas from the local vicinity creating vast collections of stars. In the very centre of these young galaxies, supermassive blackholes would reside turning the galaxy into powerful quasars. A recent survey by the James Webb Space Telescope (JWST) reveals that black holes can create a powerful solar wind that can remove gas from galaxies faster than they can form into stars, shutting off the creation of new stars.

To remove the confusion and mystique around black holes, they are the corpse of massive stars. When supermassive stars collapse at the end of their lives their core turns into a point source that is so incredibly dense that even light, travelling at 300,000 kilometres per second, is unable to escape. It’s believed that many galaxies have supermassive black holes at their core. 

Swift scene change to the earlier part of the life of a star. Fusion in the core generates incredible amounts of energy as new elements are synthesised. Along with new elements, heat and light, a powerful outflow of electrically charged particles rushes away and permeates the surrounding space. Here in our Solar System, charged particles rush Earthward and on arrival we experience the glorious display of the northern lights. 

Visualization of the solar wind encountering Earth’s magnetic “defenses” known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet’s nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL

A team of astronomers using the JWST have found that, over 90 percent of the wind that flows through a distant galaxy is made of neutral gas and to date, has been invisible. Until recently it was only possible to detect ionised gas – gas which carries an electric charge – which is warm. The neutral gas in the study revealed that neutral gas was cold but JWST was able to detect it. 

The powerful outflow of neutral gas is thought to come from the supermassive blackholes at the core of some galaxies at the edge of the Universe. The team, led by Dr Rebecca Davies from Swinburne University first identified that black hole driven outflow in a distant galaxy over 10 billion light years away. The paper published in Nature explains how ‘The outflow is removing gas faster than gas is being converted into stars, indicating that the outflow is likely to have a very significant impact on the evolution of the galaxy.’

With a lack of gas and dust, star formation will slow and eventually stop. Just like a forest that always has new trees growing to replace old, dying trees, so galaxies usually have star formation to replace dying stars. Ultimately the forest, and a galaxy will be unable to grow and develop and eventually become static and slowly die with the final stars blinking out. 

This is a JWST view of the Crab Nebula. Like other supernovae, a star exploded to create this scene.The result is a rapidly spinning neutron star (a pulsar) at its heart, surrounded by material rushing out from the site of the explosion. SN 2022jli could have either a neutron star or a black hole orbiting with a companion star.

The team found that the active galactic nuclei with supermassive black holes are the driving force behind this outflow of gas. Those with the most massive black holes can even strip the host galaxy of all the star forming gasses playing a major role in the evolution of the galaxy. 

Source : New JWST observations reveal black holes rapidly shut off star formation in massive galaxies

The post Black Holes Can Halt Star Formation in Massive Galaxies appeared first on Universe Today.

Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator - Science