You are here

News Feeds

Jesus ‘n’ Mo ‘n’ Ganesha

Why Evolution is True Feed - Wed, 01/31/2024 - 7:00am

My favorite Hindu god, the beloved elephant-headed Ganesha (I have a big collection of bronze Ganesha statues acquired during my many trips to India) appears in today’s Jesus and Mo strip, called “hose.” Remember that in last week’s strip Ganesh appeared as an example of religious discrimination via the Hindu caste system.

Now a Hindu god walks into a bar and. . . . .

Categories: Science

Adulteration of Herbal Supplements Continues

Science-based Medicine Feed - Wed, 01/31/2024 - 5:04am

The supplement industry continues to be plagued by deliberate adulteration of products.

The post Adulteration of Herbal Supplements Continues first appeared on Science-Based Medicine.
Categories: Science

Alice in Wonderland syndrome mapped in the brain to improve treatments

New Scientist Feed - Wed, 01/31/2024 - 4:00am
Scientists have mapped the brain circuit behind a form of Alice in Wonderland syndrome, when someone sees themselves or others in distorted proportions, in research that could improve how it is treated
Categories: Science

What we know about the stars where NASA will hunt for alien life

New Scientist Feed - Tue, 01/30/2024 - 11:00pm
Scientists have analysed the stars that an upcoming NASA telescope will target in its search for biosignatures, narrowing down the candidates for those that could host potential extraterrestrial life
Categories: Science

Astrobiology: Why study it? How to study it? What are the challenges?

Universe Today Feed - Tue, 01/30/2024 - 6:53pm

Universe Today has proudly examined the importance of studying impact craters, planetary surfaces, and exoplanets, and what they can teach scientists and the public about finding life beyond Earth. Impact craters both shape these planetary surfaces and hold the power to create or destroy life, and we learned how exoplanets are changing our views of planetary formation and evolution, including how and where we might find life in the cosmos. Here, we will discuss how these disciplines contribute to the field responsible for finding life beyond Earth, known as astrobiology. We will discuss why scientists study astrobiology, also known as astrobiologists, challenges of studying astrobiology, and how students can pursue studying astrobiology, as well. So, why is it so important to study astrobiology?

Dr. Manasvi Lingam, who is an astrobiologist and assistant professor in the Department of Aerospace, Physics and Space Sciences at the Florida Institute of Technology, tells Universe Today, “Astrobiology deals with some of the deepest questions that have fascinated humankind for millennia: Where did we come from? Are we alone? Where are we going?”

The unofficial definition of astrobiology is “the study of life in the universe”. While this is often interpreted as life beyond Earth, it actually includes Earth. Previously, we learned how planetary geologists use Earth as an analog for studying planetary surfaces on other worlds, and astrobiologists also use Earth—which is the only planet known to have life—as an analog for trying to find life on other worlds, as well. They examine the myriad of processes that take place for life to both exist, survive, and thrive on our small, blue world, and ask whether these same processes could be responsible for life existing on other worlds, not just in our solar system, but throughout the universe. Therefore, what are some of the challenges of studying astrobiology?

“Astrobiology is an inherently multidisciplinary and transdisciplinary subject,” Dr. Lingam tells Universe Today. “Hence, it requires acquiring a considerable base of knowledge, and then synthesizing that knowledge in a meaningful fashion.”

What makes the field of astrobiology unique is that it involves a myriad of scientific disciplines and backgrounds. These disciplines include astronomy, astrophysics, biology, chemistry, computer science, geology, physics, and planetary science, who use fieldwork, laboratory studies, and computer models and come together with the common goal of both better understanding life on Earth and how we can find it beyond Earth, as well. A specific aspect of astrobiology that has taken root in the last few years is the study of extremophiles, which is life that can both survive and thrive in environments too extreme for both humans and most of life on the Earth. These extremophiles have been found to live in extreme heat, cold, salinity (salt), and pressure environments. But what has been the most exciting aspect of astrobiology that Dr. Lingam has studied throughout his career?

“I have enjoyed all areas of astrobiology that I have worked on,” Dr. Lingam tells Universe Today. “Some recent highlights include: (1) understanding how information sensing and transmission in varied environments may have shaped the origin and evolution of life; (2) formulating novel detectable signatures of extraterrestrial technology and intelligence (i.e., technosignatures); (3) investigating how high-energy astrophysical processes (e.g., supernovae) can sterilize large portions of galaxies; (4) modeling the lifetimes of technospheres on habitable worlds.”

2017 video showing Dr. Manasvi Lingam discussing how we can detect biosignatures on exoplanets.

While present technological constraints currently limit our direct search for life beyond Earth to our solar system, there are several planetary bodies that are targets for astrobiologists, including the planets Venus and Mars, along with Jupiter’s icy moon, Europa, and Saturn’s largest moon, Titan. Beyond the solar system, the study of exoplanets continues to shape our understanding of the formation and evolution of planets and their atmospheres, some of which exhibit characteristics that vary greatly from what we see in our solar system.

Regarding what advice Dr. Lingam can offer upcoming students who wish to pursue studying astrobiology, he tells Universe Today, “I would advise students to specialize in one particular area (physics in my case) — as it will be the core field through which they interface with astrobiology — while also acquiring a broad knowledge base in fields like chemistry, astronomy, biology, geology, and planetary science.”

Several academic institutions in the United States offer both undergraduate and graduate programs for astrobiology, including Arizona State University, Florida Institute of Technology, Penn State University, and University of Washington. However, it might be safe to assume that any scientific degree of choice could lead to a career in astrobiology, which includes research, academia, and science communication.

Dr. Lingam concludes by telling Universe Today, “Carl Sagan wrote of astronomy: ‘It has been said that astronomy is a humbling and character-building experience.’ This beautiful statement is even more applicable to astrobiology, which grapples with the grand theme of understanding and making sense of our place in the grand cosmic scheme of things.”

How will astrobiology help us better understand our place in the universe in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Astrobiology: Why study it? How to study it? What are the challenges? appeared first on Universe Today.

Categories: Science

AI-powered app can detect poison ivy

Computers and Math from Science Daily Feed - Tue, 01/30/2024 - 5:09pm
To find poison ivy before it finds you, scientists have published a new study in which they show how they used artificial intelligence to confirm that an app can identify poison ivy. The app is not yet commercially available, nor is there a timetable for it to be available.
Categories: Science

Webb Directly Images Two Planets Orbiting White Dwarfs

Universe Today Feed - Tue, 01/30/2024 - 4:06pm

In several billion years, our Sun will become a white dwarf. What will happen to Jupiter and Saturn when the Sun transitions to become a stellar remnant? Life could go on, though the giant planets will likely drift further away from the Sun.

Stars end their lives in different ways. Some meet their end as supernovae, cataclysmic explosions that destroy any orbiting planets and even sterilize planets light-years away. But only massive stars explode like that.

Our Sun is not massive enough to explode as a supernova. Instead, it’ll spend time as a red giant. The red giant phase occurs when a star runs out of hydrogen to feed fusion. It’s a complicated process that astronomers are still working hard to understand. But red giants shed layers of material into space that light up as planetary nebulae. Eventually, the red giant is no more, and only a tiny, yet extraordinarily dense, white dwarf resides in the middle of all the expelled material.

Researchers think that some white dwarfs have debris disks around them, out of which a new generation of planets can form. But researchers have also wondered if some planets can survive as stars transition from the main sequence to red giant to white dwarf.

Researchers at the Space Telescope Science Institute, Goddard Space Flight Center, and other institutions have found what seem to be two giant planets orbiting two white dwarfs in two different systems. Their research is titled “JWST Directly Images Giant Planet Candidates Around Two Metal-Polluted White Dwarf Stars,” and it’s in pre-print right now. The lead author is Susan Mullally, Deputy Project Scientist for JWST.

Theoretical thinking shows that exoplanets should exist around white dwarfs. Outer planets beyond where the asteroid belt is in our Solar System should survive their star’s transition from the main sequence to a red giant to a white dwarf. But stars inside this limit will be engulfed by the red giant as it expands. In our Solar System, the Sun will likely completely engulf or tidally disrupt and destroy Mercury, Venus, and Earth. Maybe even Mars.

Artist’s impression of a red giant star. As these stars lose mass, they expand and can envelop planets that are too close. Credit: NASA/ Walt Feimer

Planets that survive this will likely drift further from the star since the star loses mass and its gravity weakens during the red giant phase.

But the problem is that it’s difficult to detect planets around white dwarfs. Despite pointed efforts, astronomers have only found a few planetary-mass objects orbiting white dwarfs.

As it stands now, Mullally and her colleagues have found two candidate planets around white dwarfs. They’re about 11.5 and 34.5 AU from their stars, which are 5.3 billion and 1.6 billion years old. If the planets are as old as the stars, then MIRI photometry shows that the planets are between 1 to 7 Jupiter masses. They could be false positives, but there’s only a 1 in 3,000 chance that that’s the case.

“If confirmed, these would be the first directly imaged planets that are similar in both age and separation
to the giant planets in our own solar system, and they would demonstrate that widely separated giant
planets like Jupiter survive stellar evolution,” the authors write.

If the researchers are correct, and the planets formed at the same time as the stars, this is an important leap in our understanding of exoplanets and the stars they orbit. It may also have implications for life on any moons that might be orbiting these planets.

But this discovery relates to another issue with white dwarfs: white dwarf metallicity.

Some white dwarfs appear to be polluted with metals, elements heavier than hydrogen and helium. Astronomers think that these metals come from asteroids in the asteroid belt, perturbed and sent into the white dwarf by giant planets. “Confirmation of these two planet candidates with future MIRI imaging would provide evidence that directly links giant planets to metal pollution in white dwarf stars,” the authors write.

Astronomers have found that up to 50% of isolated white dwarfs with hydrogen atmospheres have metals in their photospheres, the stars’ surface layer. These white dwarfs must be actively accreting metals from their surroundings. The favoured source for these metals is asteroids and comets.

“In this scenario, planets that survive the red-giant phase occasionally perturb the orbits of asteroids and comets, which then fall in towards the WD,” the authors write.

This artist’s illustration shows rocky debris being drawn toward a white dwarf. Astronomers think that giant planets perturb smaller objects like asteroids and comets inside the WD’s Roche limit. They’re destroyed, and the debris is drawn onto the star’s surface. Image Credit: NASA, ESA, Joseph Olmsted (STScI)

Astronomers have struggled to find planets around WDs. The main methods of finding planets aren’t very effective around white dwarfs. The transit method used by Kepler and TESS is ineffective because WDs are so tiny and dim. The other method is the radial velocity method. It senses how a star wobbles due to a planet’s influence. It measures the change in the star’s spectrum due to the wobbling. However, WDs have nearly featureless spectra, making radial changes difficult to detect.

But now we have the JWST.

“JWST’s infrared capabilities offer a unique opportunity to directly image Jupiter-mass planets orbiting
nearby WDs,” the researchers write in their paper.

The JWST is powerful enough to directly image large planets around tiny stars without using a coronagraph, as long as the planets are far enough away from the star. “Taking advantage of JWST’s superb resolution, it is possible to directly image a planet at only a few au from nearby WDs without the use of a coronagraph,” Mullally and her colleagues explain.

Part of the effort in this work is identifying point sources. In astronomy, a point source is a single, identifiable source of light. Its opposite is a resolved source or an extended source. The researchers had to be confident that what they’re seeing around the white dwarfs are point sources, which are mostly likely planets in this case. “We expect these to appear as point sources that increase in brightness at longer wavelengths,” they write.

To determine if what they’re seeing are point sources, astronomers use a process called reference differential imaging. It’s a complex procedure, but basically, it involves subtracting the sources from the images. It’s especially effective at finding planets close to stars.

This figure from the research explains some of the findings. Each row is a separate white dwarf and planet candidate. In the top row, the large object in the north is a background galaxy unrelated to the research. The researchers went through a process of subtracting and then adding back in both the stars and the giant planet candidates. Image Credit: Mullally et al. 2024.

The figure above shows how the team worked with the images, subtracting both the white dwarf and the candidate planets and identifying the planets as point sources. “In both cases, the candidate is removed cleanly, indicating it is point-source in nature,” the authors write. The researchers examined four separate white dwarfs and only two of them have candidate exoplanets.

“If confirmed, these two planet candidates provide concrete observational evidence that outer giant planets like Jupiter survive the evolution of low-mass stars,” the authors write. Confirmation would also support the idea that 25%-50% of white dwarfs host large planets. That’s a big step forward in understanding.

But these results unfortunately can’t answer another question: are large planets responsible for sending debris onto the surface of white dwarfs? “The confirmation of these planets are not, however, sufficient to fully validate that large-mass giant planets are the driver of accretion without further observations,” writes Mullally and her co-authors.

An answer to that question can only come from observing more white dwarfs, especially with the JWST. Hopefully, we won’t have to wait long.

The post Webb Directly Images Two Planets Orbiting White Dwarfs appeared first on Universe Today.

Categories: Science

Watch parrots use their beaks for a newly identified form of motion

New Scientist Feed - Tue, 01/30/2024 - 4:01pm
Not only can parrots fly and walk, they can also swing along branches using their beak, in a technique called beakiation
Categories: Science

Researchers craft new way to make high-temperature superconductors -- with a twist

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 2:28pm
An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Categories: Science

Researchers craft new way to make high-temperature superconductors -- with a twist

Computers and Math from Science Daily Feed - Tue, 01/30/2024 - 2:28pm
An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Categories: Science

Neuralink Implants Chip in Human

neurologicablog Feed - Tue, 01/30/2024 - 2:18pm

Elon Musk has announced that his company, Neuralink, has implanted their first wireless computer chip into a human. The chip, which they plan on calling Telepathy (not sure how I feel about that) connects with 64 thin hair-like electrodes, is battery powered and can be recharged remotely. This is exciting news, but of course needs to be put into context. First, let’s get the Musk thing out of the way.

Because this is Elon Musk the achievement gets more attention than it probably deserves, but also more criticism. It gets wrapped up in the Musk debate – is he a genuine innovator, or just an exploiter and showman? I think the truth is a little bit of both. Yes, the technologies he is famous for advancing (EVs, reusable rockets, digging tunnels, and now brain-machine interface) all existed before him (at least potentially) and were advancing without him. But he did more than just gobble up existing companies or people and slap his brand on it (as his harshest critics claim). Especially with Tesla and SpaceX, he invested his own fortune and provided a specific vision which pushed these companies through to successful products, and very likely advanced their respective industries considerably.

What about Neuralink and BMI (brain-machine interface) technology? I think Musk’s impact in this industry is much less than with EVs and reusable rockets. But he is increasing the profile of the industry, providing funding for research and development, and perhaps increasing the competition. In the end I think Neuralink will have a more modest, but perhaps not negligible, impact on bringing BMI applications to the world. I think it will end up being a net positive, and anything that accelerates this technology is a good thing.

So – how big a deal is this one advance, implanting a wireless chip into a human brain? Not very, at least not yet. Just the mere fact of implanting a chip is not a big deal. The real test is how long it lasts, how long it maintains its function, and how well it functions – none of which has yet been demonstrated. Also, other companies (although only a few) are ahead of the game already.

Here is a list of five companies (in addition to Neuralink) working on BMI technology (and I have written about many of them before). Synchron is taking a different approach, with their stentrodes. Instead of implanting in the brain, which is very invasive, they place their electrodes inside veins inside the brain, which gets them very close to brain tissue, and critically inside the skull. They completed their first human implant in 2022.

Blackrock Neurotech has a similar computer chip with an array of tiny electrodes that gets implanted in the brain. They are farther along than Neuralink and are the favorite to have a product available for use outside a research lab setting. Clearpoint Neuro is working with Blackrock to develop a robot to automatically implant their chips with the precision necessary to optimize function. They also are developing their own applications for BMI and also implants for drug delivery to brain tissue.

Braingate has also successfully implants an array of electrodes into humans that allows them to communicate wireless to external devices, allowing them to control computer interfaces or robotic limbs.

These companies are all focusing on implanted devices. There is also research into using scalp surface electrodes for a BMI connection. The advantage here is that nothing has to be implanted. The disadvantage is that the quality of the signal is much less. Which option is better depends on the application. Neurable is working on external BMI that you wear like headphones. They envision this will be used like a virtual reality application, but with neuro-reality (VR through a neurological connection, rather than goggles).

All of these advances are exciting, and I have been following them closely and reporting on them over the years. The Neuralink announcement adds them to the list of companies who have implanted a BMI chip into a human, a very exclusive club, but does not advance the cutting edge beyond where it already is.

What has me the most excited recently, actually, is advances in AI. What we need to have fairly mature BMI technology, the kind that can allow a paralyzed person to communicate effectively or control robotic limbs, is an implant (surface electrodes are not enough for these applications) that has many connection, is durable, self powered (or easily recharged), does not damage brain tissue, and maintains a consistent connection (does not move or migrate). We keep inching close to this goal. The stentrode may be a great intermediary step, good enough for decades until we develop really good implantable electrodes, which will almost certainly have to be soft and flexible.

But as we slowly and incrementally advance toward this goal (basically the hardware) we also have to keep an eye on the software. I had thought that this basically peaked and was more than advanced enough for what it needed to do – translate brain signals into what the person is thinking with enough fidelity to provide communication and control. But recent AI applications are showing how much more powerful this software can be. This is what AI is good at – taking lots of data and making sense of it. The same way it can make a deep fake of someone’s voice, or recreate a work of art in the style of a specific artist, it can take the jumble of blurry signals from the brain and assemble it into coherent speech (at least that’s the goal). This essentially means we can do much more with the hardware we have.

This is the kind of thing that might make Stentrode the leader of the pack – they sacrifice a little resolution for being much safer and less invasive. But that sacrifice may be more than compensated for with a good AI interface.

The bottom line is that this industry is advancing nicely. We are at the cusp of going from the laboratory to early medical applications. From there we will go to more advanced medical applications, and then eventually to consumer applications. It should be exciting to watch.

 

The post Neuralink Implants Chip in Human first appeared on NeuroLogica Blog.

Categories: Skeptic

The Aftermath of a Recent Galactic Merger

Universe Today Feed - Tue, 01/30/2024 - 1:17pm

NGC 4753 is a prime example of what happens after a galactic merger. It looks like a twisted mess, with dust lanes looping around the massive galactic nucleus. Astronomers long wondered what happened to this galaxy, and with a sharp new image created by the Gemini South telescope, they can finally explain its tortured past.

Officially, NGC 4753 is classified as a “peculiar” galaxy due to its odd appearance. But, like other survivors of galactic mergers and acquisitions, it has probably had several “shapes” throughout its history. Most galaxies are classified as spirals, ellipticals, lenticulars, and irregulars. For this one, astronomers suspect it was formerly a lenticular with a substantial disk and not much in the way of spiral arms. Then, more than a billion years ago, it encountered a neighboring dwarf galaxy and they tangled together. A team led by astronomer Tom Steiman-Cameron at Indian University studied this galaxy in great detail to understand how it got the way it is today. “Galaxies that gobble up another galaxy often look like train wrecks,” he said, ”and this is a train-wreck galaxy.”

NGC 4753 lies in the Virgo Cluster of galaxies, at a distance of about 60 million light-years. It lies within its own smaller galactic collective, called the NGC 4753 group. The galaxy itself appears to have a dark matter shell, and about a thousand globular clusters orbiting its core. Its peculiar dust lanes first caught astronomers’ attention in the 20th Century, although the galaxy itself was discovered by William Herschel in 1784.

Galactic Mergers and Acquisitions

Galaxies have merged throughout the history of the Universe. In the beginning, small shreds of galaxies mixed with their neighbors to form larger ones. That process continued, creating the amazing diversity of galactic forms we see today. When galaxies meet like this, they mingle their stars and material. Gravitational forces sculpt the galaxies, and shock waves induce waves of star birth. This makes galaxies very dynamic objects, changing over time as they meet and mingle with their neighbors.

An HST image of the interacting galaxies in IC 1623. They are plunging headlong into one another in a process known as a galactic merger. That ignited a frenzied spate of star formation known as a starburst, creating new stars at a rate more than twenty times that of the Milky Way galaxy.

We see this process playing out across the Universe. Our own Milky Way Galaxy is the result of numerous galactic mergers since it began to form about 13 billion years ago. Each collision brought infusions of new stars and interstellar gas and dust and changed our galaxy’s appearance. Today, the Milky Way is a barred spiral shape, but it began as an indistinct lump of stars, gas, and dust in the early Universe. It continues its merger history in modern times. Astronomers are tracking the action as our galaxy gobbles up several smaller galaxies, including the Sagittarius Dwarf. In addition, the Milky Way and Andromeda galaxies will merge in about five billion years. That process will radically alter their shapes, too, resulting in a vast galaxy known as Milkdromeda.

View of Milkdromeda from Earth “shortly” after the galactic merger of the Milky Way and Andromeda, around 3.85-3.9 billion years from now Credit: NASA, ESA, Z. Levay and R. van der Marel (STScI), T. Hallas, and A. Mellinger A Tale of NGC 4753’s Galactic Merger

When NGC 4753 began its cosmic dance, it tangoed with a gas-rich dwarf galaxy. Bursts of star formation triggered by the collision (and influx of gas) injected huge amounts of dust into the region. The galaxy followed a spiraling path into the collision, and that smeared out the dust into the disk. Ultimately, the activity gave the galaxy its peculiar look. “For a long time nobody knew what to make of this peculiar galaxy,” said Steiman-Cameron. “But by starting with the idea of accreted material smeared out into a disk, and then analyzing the three-dimensional geometry, the mystery was solved. It’s now incredibly exciting to see this highly-detailed image by Gemini South 30 years later.”

Steiman-Cameron and his team explain the galaxy’s peculiarity with a phenomenon known as “differential precession”. Precession occurs when a rotating object’s axis of rotation changes orientation, like a spinning top. Differential means that the rate of precession varies depending on the radius. For the dusty accretion disk orbiting the galactic nucleus in this collision, the rate of precession is faster toward the center and slower near the edges. This galactic wobble-like motion results from the angle at which NGC 4753 and its former dwarf companion collided. That resulted in the strongly twisted dust lanes threading through this galaxy.

Implications for Other Peculiar Galaxies

Interestingly, although this galaxy certainly looks weird enough in the Gemini image, it’s all a matter of viewing perspective. We’re looking at it from an edge-on view. That’s how we can spot the dust lanes and other features in the disk.

A model of NGC 4753 as seen from various viewing orientations. From left to right and top to bottom, the angle of the line of sight to the galaxy’s equatorial plane ranges from 10° to 90° in steps of 10°. Although galaxies similar to NGC 4753 may not be rare, only certain viewing orientations allow for easy identification of a highly twisted disk. This infographic is a recreation of Figure 7 from a 1992 research paper.

But, if we could get in a spaceship and fly directly “north” of NGC 4753 to get a “top-down” view, it would look pretty much like a standard spiral galaxy. Now that astronomers know about its galactic merger history, they can do further studies to understand its stellar populations and interactions of those bizarre dust lanes. And, its history may go a long way toward explaining the appearances of other “peculiar” galaxies in the Universe.

For More Information

Gemini South Captures Twisted Dusty Disk of NGC 4753, Showcasing the Aftermath of Past Merger
The Remarkable Twisted Disk of NGC 4753 and the Shapes of Galactic Halos

The post The Aftermath of a Recent Galactic Merger appeared first on Universe Today.

Categories: Science

Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb

Universe Today Feed - Tue, 01/30/2024 - 1:05pm

If you’re fascinated by Nature, these images of spiral galaxies won’t help you escape your fascination.

These images show incredible detail in 19 spirals, imaged face-on by the JWST. The galactic arms with their multitudes of stars are lit up in infrared light, as are the dense galactic cores, where supermassive black holes reside.

The JWST captured these images as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) programme. PHANGS is a long-running program aimed at understanding how gas and star formation interact with galactic structure and evolution. One of Webb’s four primary science goals is to study how galaxies form and evolve, and the PHANGS program feeds that effort. The VLT, ALMA, the Hubble, and now the JWST have all contributed to it.

But Webb’s images are the juiciest.

“Webb’s new images are extraordinary. They’re mind-blowing even for researchers who have studied these same galaxies for decades.”

Janice Lee, Project Scientists, Space Telescope Science Institute.

The JWST can see in both near-infrared (NIR) and mid-infrared (MIR) light. That means it reveals different details, and more details, than even the powerful Hubble Space Telescope, which operates in visible light, UV light, and a small portion of infrared light.

This is NGC 4254 (Messier 99), a spiral galaxy about 50 million light-years away. It has a peculiarity to it, as one spiral arm is normal looking, and one is extended and less tightly wound. Though not a starburst galaxy, it forms stars three times as fast as other similar galaxies. This rapid star formation rate may have been triggered by interaction with another galaxy about 280 million years ago. With the JWST’s help, the PHANGS program will help astronomers understand NGC 4254’s history. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team

In these JWST high-resolution images, the red colour is gas and dust emitting infrared light, which the JWST excels at seeing. Some of the images have bright diffraction spikes in the galactic center, which are caused by an enormous amount of light. That can indicate that a supermassive black hole is active, or it could be from an extremely high concentration of stars.

“That’s a clear sign that there may be an active supermassive black hole,” said Eva Schinnerer, a staff scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. “Or, the star clusters toward the center are so bright that they have saturated that area of the image.”

The diffraction spike in the center of NGC 1365 is a telescope artifact caused by an enormous amount of light in a compact region. It’s caused by either the active supermassive black hole or tightly grouped stars in the galactic centre. NGC 1365 is a double-barred spiral galaxy about 74 million light-years away. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team

Stars near a galaxy’s center are typically much older than stars in the arms. The further a star is from the galactic center, the younger it typically is. The younger stars appear blue and have blown away the cocoon of gas and dust that they spawned in.

This is NGC 2835, a spiral galaxy about 35 million light-years away that has four or five spiral arms. Blue dots are very young stars that have blown away nearby gas and dust with their powerful UV light. Orange/red clumps are where even younger stars reside. They’re still surrounded by gas and dust. Several background galaxies are visible in the image. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team

Orange clumps indicate even younger stars. They’re still wrapped in their blanket of gas and dust and are still actively accreting material and forming. “These are where we can find the newest, most massive stars in the galaxies,” said Erik Rosolowsky, a professor of physics at the University of Alberta in Edmonton, Canada.

The new images were released alongside some of the Hubble’s views of the same galaxies. These highlight how observing different wavelengths of light reveals or obscures different details in the galaxies. In the PHANGS observing program, different telescopes have observed galaxies in visible light, infrared light, UV light, and radio.

A Hubble Space Telescope image of NGC 628 (left) and the same galaxy as imaged by the JWST (right.) Both images are grand and inspiring and full of information, but the JWST image provides more detail. Large bubble-shaped gaps between concentrations of gas and dust are visible. In some of the images, those could be caused by supernovae. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team

Since the human eye can’t see infrared, different visible colours are assigned to different wavelengths of light in order to make the images meaningful. In the JWST image of NGC 628 above, the galaxy’s center is filled with old stars that emit some of the shortest wavelengths of light the telescope can detect. They’ve been given a blue colour to make them visible. In the Hubble image, the same region is more yellow and washed out. The region emits the longest wavelengths of light that the Hubble can sense, so it has different colour assignments than the JWST.

Janice Lee is a project scientist at the Space Telescope Science Institute in Baltimore. She spoke for all of us when she said, “Webb’s new images are extraordinary. They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed and tell a story about the star formation cycle.”

This is NGC 1672, a spiral galaxy about 60 million light-years away. It may be a type II Seyfert galaxy, though astronomers aren’t totally certain. It has both a bright nucleus and a surrounding starburst region. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team

These galaxies are all spiral galaxies like the Milky Way, meaning their massive arms define them. The spiral arms are more like waves that travel through space rather than individual stars moving collectively. Astronomers study the arms because they can provide key insights into how galaxies build, maintain, and shut off star formation. “These structures tend to follow the same pattern in certain parts of the galaxies,” Rosolowsky added. “We think of these like waves, and their spacing tells us a lot about how a galaxy distributes its gas and dust.”

The spiral galaxy NGC 1566 is about 60 million light-years away in the constellation Dorado. NGC is interacting with smaller member galaxies in its neighbourhood. It’s an active galaxy, meaning its nucleus emits a lot of light that doesn’t come from stars. Instead, it probably comes from the supermassive black hole at the center. NGC 1566 is extensively studied due to its proximity, orientation, its strong spiral arms and its active galactic nucleus. Image Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team

Ever since it began science operations, the JWST has given astronomers an overwhelming flow of data that will fuel research for years and decades to come. These beautiful images are just a part of a larger data release that includes a catalogue of about 100,000 star clusters. “The amount of analysis that can be done with these images is vastly larger than anything our team could possibly handle,” said the University of Alberta’s Erik Rosolowsky. “We’re excited to support the community so all researchers can contribute.”

The post Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb appeared first on Universe Today.

Categories: Science

Neuralink: What do brain implants do and why is Elon Musk making them?

New Scientist Feed - Tue, 01/30/2024 - 11:40am
Elon Musk's Neuralink company is conducting its first human trials, implanting a tiny chip onto the surface of a person's brain to allow them to talk directly with computers
Categories: Science

Testimony on UNRWA before Congress

Why Evolution is True Feed - Tue, 01/30/2024 - 11:08am

If you have any interest in UNRWA, several people, including Hillel Neuer, the head of the NGO UN Watch, will testify before a House subcommittee starting NOW. I expect there will be lot of testimony, supported by evidence, about how this UN agency was in effect an arm of Hamas.

It’s a bit late, as it was supposed to start at 2 p.m. Eastern time, but should start shortly.

Here are the witnesses. It should be enlightening:

Richard Goldberg
Senior Advisor
Foundation for Defense of Democracies

Marcus Sheff
Chief Executive Officer
IMPACT-se

Hillel Neuer
Executive Director
UN Watch

Mara Rudman
Schlesinger Professor
University of Virginia Miller Center

And here’s the link. It sounds as if there are hecklers in the audience.

Categories: Science

Superfluids could share characteristic with common fluids

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 10:36am
Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.
Categories: Science

Geoengineering may slow Greenland ice sheet loss

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 10:36am
Modeling shows that stratospheric aerosol injection has the potential to reduce ice sheet loss due to climate change.
Categories: Science

Artificial muscles -- lighter, safer, more robust

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 10:36am
Researchers have developed artificial muscles that are lighter, safer and more robust than their predecessors. The newly developed actuators have a novel type of shell structure and use a high-permittivity ferroelectric material that can store relatively large amounts of electrical energy. They therefore work with relatively low electrical voltage, are waterproof, more robust and safer to touch.
Categories: Science

Sweat-resistant wearable robot sensor

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 10:36am
A joint research team has developed a stretchable and adhesive microneedle sensor that can be attached to the skin and stably measure high-quality electrophysiological signals for a long period of time.
Categories: Science

New breakthroughs for unlocking the potential of plasmonics

Matter and energy from Science Daily Feed - Tue, 01/30/2024 - 10:36am
Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator