What new technologies or methods can be developed for more efficient in-situ planetary subsurface analyses? This is what a recent study presented at the 56th Lunar and Planetary Science Conference hopes to address as a team of researchers investigated how a novel instrument called OptiDrill could fill existing technological voids regarding the sampling and collection of regolith (top dust layer) and subsurface samples on a myriad of planetary bodies throughout the solar system.
To understand how chaotic the early Solar System was, we need only gaze at the Moon. Its cratered surface bears the scars from multitudes of collisions. The early Solar System was like a debris field where objects smashed into each other in cascades of collisions. The same must be true in all young solar systems, and in a new paper, researchers simulated a collision between two massive planets to see what would happen.
The Nancy Grace Roman Space Telescope Could Study Dying Planets
The Nancy Grace Roman Space Telescope Could Study Dying Planets
When astronomers want to understand brown dwarfs, they often turn to WISE 1049AB. It's a benchmark brown dwarf in astronomy, and the closest and brightest brown dwarf we know of. The binary pair, which is also known as Luhman 16, is about 6.5 light-years away. Brown dwarfs are a crucial bridge between planets and stars, and understanding them helps astronomers understand the dynamics of both exoplanets and stars.
The JWST continues to live up to its promise by revealing things hidden from other telescopes. One of its lesser-known observations concerns Free-Floating Planets (FFP). FFPs have no gravitational tether to any star and are difficult to detect because they emit so little light. When the JWST detected 42 of a particular type of FFP in the Orion Nebula Cluster, it gave astronomers an opportunity to study them more closely.
A new space mission is open for business. Last week, we got a look at science images from NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Re-ionization, and Ices Explorer) mission. The mission will now begin science operations, taking 3,600 unique images a day in an effort to create a 3D map of the sky.
New Horizons' primary mission is complete. It's already completed its pass through the Pluto system and even stopped by 486958 Arrokoth, a Kuiper belt object on its way out of the solar system. But that doesn't mean it's done providing new scientific insights. A new paper looks at data collected by its ultraviolet spectrograph, which looked at one particular wavelength and helped provide context to a few different questions about the solar system.
How do you distinguish a galaxy from a mere cluster of stars? That's easy, right? A galaxy is a large collection of millions or billion of stars, while a star cluster only has a thousand or so. Well, that kind of thinking won't get you a Ph.D. in astronomy! Seriously, though, the line between galaxy and star cluster isn't always clear. Case in point, UMa3/U1.
The idea that our Solar System is representative of other solar systems hasn't survived the age of exoplanet discovery. Kepler and TESS have shown us that our system doesn't even contain the most common type of planet: sub-Neptunes. These planets pose a mystery to planetary scientists, and the JWST is helping unravel the mystery.
The solar gravitation lens (SGL) has much potential as a telescope. This point in space, located about 650 AU away from the Sun, uses fundamental properties of physics to amplify the light from extremely far-away objects, allowing us to see them at a level of detail unachievable anywhere else. However, any SGL mission would face plenty of technical and physical challenges. A new paper by independent researcher Viktor Toth is the latest in a series that discusses those challenges when imaging a far-away exoplanet, and in particular, looks at the difficulties in dealing with potential moving cloud cover. He concludes that using the SGL might not be the most effective way of capturing high-resolution images of an exoplanet, after all.
On 20 April, 2025, the African Space Agency (AfSA) was formally launched at an inauguration ceremony in Cairo, Egypt. The decision to create AfSA was made by the African Union (AU) in 2016 to coordinate the continent's approach to space, and enact the African Space Policy and Strategy. AfSA will coordinate African space cooperation with Europe and other international partners.
The White House Releases its 2026 Budget Request for NASA. Cuts to SLS, Gateway and Orion
The center of the Milky Way is a busy place, tightly packed with stars and dominated by the supermassive black hole Sagittarius A*. It also features powerful magnetic fields that regulate star production, influence gas dynamics and gas cloud formation, and even affect the accretion processes around Sagittarius A*. Gigantic filaments of gas that look like bones form along the magnetic field lines, and one of them appears to be fractured.
Has your dinner time conversations been dragging a bit of late? Feel like raising its knowledge level to a bit higher than the usual synopsis of the most recent reality TV show? Then take the challenge presented by Sean Carroll in his book "The Biggest Ideas in the Universe – Space, Time and Motion". Using this, your conversation might soon be sparkling with grand thoughts about modern physics, time travel, going faster than light and the curvature of the universe.
The Juno spacecraft circling in Jovian space is the planetary science gift that just keeps on giving. Although it's spending a lot of time in the strong (and damaging) Jovian radiation belts, the spacecraft's instruments are hanging in there quite well. In the process, they're peering into Jupiter's cloud tops and looking beneath the surface of the volcanic moon Io.
As young stars form, they exert a powerful influence on their surroundings and create complex interactions between them and their environments. As they gobble up gas and dust, they generate a rotating disk of material. This protoplanetary disk is where planets form, and new research shows that stars can feed too quickly and end up regurgitating material back into the disk.
A team of researchers led by the Los Alamos National Laboratory examined the possibility that the jets coming from collapsing stars could be responsible for creating the heaviest elements in the Universe.
We tend to think of Extraterrestrial Intelligences (ETIs)—if they exist—as civilizations that have overcome the problems that still plague us. They're advanced, peaceful, disease-free technological societies that enjoy absolute political stability as they accomplish feats of impeccable engineering. Can that really be true in a Universe where entropy sets the stage upon which events unfold?
What methods can be employed to send a spacecraft to Uranus despite the former’s immense distance from Earth? This is what a recent study presented at the 56th Lunar and Planetary Science Conference hopes to address as a team of scientists investigated ways to cut the travel time to the second most distant planet from the Sun. This study has the potential to help scientists, engineers, and mission planners develop low-cost and novel techniques for deep space travel while conducting cutting-edge science.