NASA's Mars Reconnaissance Orbiter is equipped with a powerful tool called SHARAD (Shallow Radar), designed to peer beneath the Martian surface and uncover hidden layers of ice, rock, and geological secrets. To accommodate it, engineers mounted SHARAD on the side of the spacecraft, requiring the orbiter to roll 28° during operation to boost signal quality. But computer models hinted at something else: if the orbiter rolled more than 120°, the radar performance could dramatically improve. Scientists put this daring idea to the test—and it paid off. The extreme roll manoeuvre worked, unlocking an even clearer view of Mars’s buried past.
Betelgeuse is dying—but not quietly. This colossal red supergiant, already famous for its brightness fluctuations, has now revealed a strange long-term rhythm: a secondary pulse every 2,100 days. One tantalising theory suggests a hidden companion—possibly a second star orbiting Betelgeuse at roughly the distance between Saturn and the Sun, circling every six years. Astronomers recently pointed the Hubble Space Telescope at the giant in search of this elusive “Betel-Buddy" but failed to find it constraining its size and orbit.
Exoplanet science is shifting from finding any detectable exoplanets we can to searching for those in their stars' habitable zones. NASA's proposed Habitable World Observatory and other similar efforts are focused on these worlds. The problem is, habitable zones aren't static.
Frameworks are a critical, if underappreciated, component of any space exploration mission. They can range from the overall mission architecture, capturing scientific and technical goals, to the structure of messages sent between two internal components of the system. One of the most interesting frameworks that is getting much attention in the space exploration community is the interaction of multiple robots for a single purpose, known as a multiple-robot system, or MRS. On top of that, one of the most common frameworks for robots on Earth or in space is the open-source Robot Operating System (ROS), which is commonly used to run everything from vacuum cleaners to giant mining trucks. Its most recent iteration, ROS2, even uses yet another framework, known as a middleware, to handle aspects of robot communication such as networking and packetizing data. However, there are plenty of different middlewares to choose from for ROS2, so a team of researchers from the University of Luxembourg decided to try to pick one that would be best for planetary exploration applications.
We've been gazing at the Moon for a long time, yet it's still mysterious. We've sent numerous orbiters and landers to our satellite, and even brought some of it back to our labs. Those rocks only presented more mysteries, in some ways. Lunar rocks are magnetic, yet the Moon doesn't have a magnetosphere. How did this happen?
In-situ resource utilization (ISRU) is commonly cited as being a critical step towards a sustainable human presence in space, especially on the Moon. Just how crucial it is, and how much its by-products will affect other uses of the Moon, is still up for debate. A new paper from Evangelia Gkaravela and Hao Chen of the Stevens Institute of Technology dives into those questions and comes up with a promising answer - ISRU is absolutely worth it, if we can control the waste products.